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Series MIL-53(Fe)/Bi12017Cl; (MBx) composites were constructed via facile ball-milling treatment of the
MIL-53(Fe) octahedrons and Bi12017Cl; nanosheets. The addition of a specific quality of Bi;2017Cl; was in
favor of strengthening the transfer ability of photo-generated charge carriers in the composites, thereby
further enhancing the photocatalytic performance. Being compared with pristine MIL-53(Fe) and
Bi12017Cly, the MBx composites exhibited superior white-light-driven Cr(VI) photoreduction perfor-
mance. The optimal MB100 photocatalyst displayed the best photocatalytic activity, in which 99.2% Cr(VI)
can be eliminated within 90 min under white light illumination. Under the identical reaction conditions,

ﬁﬁ‘i‘g’;ﬁi) it achieved 42.9% and 76.5% higher improvements as those of pure MIL-53(Fe) and Bi;2017Cl,. More than
Bi;2017Cl, nanosheet that, the MB100 also demonstrated good stability even after four cycles of testing experiments. At last,
Composite the corresponding reaction mechanism was clarified based on the electrochemical analysis and electron
Cr(VI) reduction spin resonance (ESR) data. Such heterogeneous photocatalyst design strategy based on Fe-MOFs and
White light bismuth-rich bismuth oxyhalides might provide new insights for treating Cr-containing wastewater.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Environmental contamination is a serious problem threatening
the sustainable development of human society. The common pol-
lutants include heavy metals (HMs) [1], persistent organic pollut-
ants (POPs) [2,3], pharmaceutical and personal care products
(PPCPs) [4], organic dyes [5], etc. Among them, Cr is a typical HMs,
which is commonly produced by leather tanning, textile
manufacturing, steel manufacturing, printing, pigment and other
industries [6,7]. Cr has two main valence states, in which Cr(VI) is a
highly carcinogenic, mutation-causing toxic substance, whereas
Cr(IIl) is an important substance to regulate sugar metabolism for
humans. As a consequence, the transformation of Cr(VI) to Cr(III)
has attracted increasing attentions. The conventional treatment
techniques include ion exchange [8], membrane separation [9], ion
exchange [9], electrolysis [10], chemical precipitation [11]. The
photocatalytic reduction method has received much attention due
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to its prominent advantages, such as mild reaction condition,
minimal secondary pollution, high-level efficiency and reutilization
properties [12—15].

BiOX (X = Cl, Br, I) materials have induced a huge amount of
interest owing to their good chemical stability, characteristic en-
ergy band structures and multitudinous morphologies [16—20].
However, it should be admitted that BiOX-based photocatalysts are
still unsatisfactory for actual applications owing to the limited ab-
sorption capacity for real sunlight and low photo-generated hole-
electron pairs separation efficiency [21]. Recently, density func-
tional theory calculation (DFT) indicates that the preparation of
bismuth halide with different atomic ratios might be inclined to
yield amounts of novel photocatalysts with different energy band
structures [22—26]. For example, the high yield Bi;;017Cl; nano-
sheet was synthesized via solvothermal method to regulate the
atomic ratio of O and CI [27]. Considering the band gap of Bi12017Cl,
is narrow (approximately 2.07 eV) [27], thus making it possess
ability to utilize sunlight light more effectively. Furthermore, as the
conduction band position of Bi;2017Cl, is negative enough, so the
molecular oxygen (O2) could transform into hydroxyl radicals (- OH)
through two-electron reaction process, which has proved to be
extremely significant for degradation of organic contaminants [27].
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Nevertheless, the pure Bi;2017Cl; photocatalyst was limited by its
relatively low utilization efficiency of photo-generated carriers, so
many researchers attempted to construct Bi;2017Cly-based com-
posites to further improve their photocatalytic activities, such as
Bi12017Cly/B-Biy03 [22], Agl/Bi;2017Cl, [23], BiOI/Bi2047Cl, [25].

Metal organic frameworks (MOFs) is a variety of three-
dimensional porous crystalline materials constructed by self-
assembly process of organic linkers and metal ions [28,29]. MOFs
are beginning to appear in a wide range of applications, like
catalysis [30—33], gas adsorption/storage [34], molecular separa-
tion [35] and chemical sensing [36]. MIL-53(Fe) recently has
attracted much scientific interest due to its special properties,
which is synthesized from Fe(Ill) ions and terephthalic acid with a
band gap of 2.82 eV [37]. It possesses prominent chemical and
thermal robustness capabilities, thus make it a distinguished pho-
tocatalyst for various redox reactions. However, with respect to
pristine materials, the photocatalytic efficiency of MIL-53(Fe) is low
owing to its poor electric conductivity [21]. Therefore, its photo-
catalytic performance can be further improved by forming heter-
ojunction structure with other semiconductors. For example, Tang
et al. [38] prepared MIL-53(Fe)/BiOBr composites by co-
precipitation strategy, which possessed good photodegradation
capacity for rhodamine B (RhB) and carbamazepine under visible
light illumination. Huang et al. [39] prepared MIL-53(Fe)/C3N4
composites through solvothermal method, the optimal photo-
catalyst achieved 100.0% of Cr(VI) reduction efficiency within
180 min upon illumination under visible light. Hu et al. [40] con-
structed CdS/MIL-53(Fe) composites to photodegradation of RhB,
which showed reinforced photocatalytic performance compared to
pure component. But so far, there are no reports about heteroge-
neous photocatalyst prepared through MIL-53(Fe) and Bi;2017Cl;
nanosheet.

Based on the above considerations, we prepared MIL-53(Fe)/
Bi12017Cly (MBx) composites via facile and controllable ball-milling
method. Their physicochemical and electrooptical properties were
explored by many kinds of characterization techniques. The
photoreduction of Cr(VI) was conducted over the as-prepared
photocatalysts, and the experimental results suggested that the
formation of composites between MIL-53(Fe) and Bi;;017Cl, could
enhance the transfer efficiency of photo-generated charge carriers
compared with the pristine component. In addition, the rational
reaction mechanism was proposed on the account of the experi-
mental consequences.

2. Experimental
2.1. Materials preparation

2.1.1. Fabrication of MIL-53(Fe) and Bi;»017Cl; photocatalysts

Both the MIL-53(Fe) and Bi;3017Cl, were prepared by sol-
vothermal methods according to the previous studies [21,27,38,41].
The details of the synthesis procedures were illustrated in the
Electronical Supporting Information.

Table 1

The preparations of the MBx composites with various dosages of Bi12017Cl5.
No. MIL-53(Fe) Bi12017Cl; (mg) Material

(mg)

1 100 50 MB50
2 100 100 MB100
3 100 200 MB200
4 100 300 MB300

2.1.2. Fabrication of MBx composites

MIL-53(Fe)/Bi12017Cl, composites were constructed by facile
ball-milling method. As shown in Table 1, 100.0 mg MIL-53(Fe) and
various amount of Bi;017Cl, were evenly added in a planetary ball-
milling instrument and ran at 30 Hz for 20 min. The products were
represented as MBx, namely MB50, MB100, MB200 and MB300. A
brief schematic illustration of photocatalysis procedure was
depicted in Fig. 1.

2.2. Photocatalytic efficiency evaluation

The photoreduction performances of different photocatalysts
were assessed by the conversion efficiencies from Cr(VI) to Cr(III).
More specifically, the addition of the photocatalyst in the reactor
was guaranteed to be 0.5 g/L and the initial concentration of Cr(VI)
was determined to 10 mg/L. Meanwhile, the pH values of the so-
lutions were regulated by 0.1 M HySO4 or 0.2 M NaOH solution.
After 30 min of adsorption-desorption equilibrium under dark
condition, the subsequent experiments were carried out under
xenon light illumination. Next, 2.0 mL solution was extracted and
filtered through 0.45 pm filter membranes at pre-set time for
follow-up tests. The Cr(VI) content in the filtrate was tested by 1,5-
diphenyl carbonyl dihydrazine colorimetry at the maximum ab-
sorption wavelength of 540 nm using a double-beam ultraviolet
spectrophotometer (UV—vis, Persee, TU-1901).

Meanwhile, the details about the different types of character-
ization techniques (PXRD, FTIR, SEM, TEM, HRTEM, XPS, UV—vis
DRS, FL and ESR) and the electrochemical analysis were illustrated
in Electronic Supplementary Material.

3. Results and discussions
3.1. Characterizations

Fig. 2(a) showed the PXRD patterns of Bi;»017Cl,, MIL-53(Fe),
and MBx composites. The characteristic peaks of the synthesized
Bi12017Cl; were in good accordance with a tetragonal phase
(N0.37—0702), in which the obvious diffraction peaks located at
26.4°,29.2°,30.4°, 32.9° and 47.2° indexed to the (115),(117),(0
012),(2 0 0) and (2 2 0) crystal planes, respectively. Furthermore,
there were no undefined diffraction peaks in the PXRD pattern of
Bi12017Cl,, suggesting that Bi12017Cl; was successfully synthesized.
Additionally, MIL-53(Fe) matched well with the characteristic
diffraction peaks reported in previous study [42]. In the PXRD
spectra of MBx composites, the principal peaks of Bi;2017Cl; can be
clearly detected, but the diffraction peaks of pristine MIL-53(Fe)
were particularly weak. This phenomenon can be ascribed to the
peak intensities of Bi;2017Cly were relatively greater than that of
MIL-53(Fe), which was similar to the reported studies about MOFs/
Bi-based composites [43,44].

The FTIR spectra of as-obtained materials were illustrated in
Fig. 2(b). As for MIL-53(Fe), the strong peaks at 1500 cm~' and
1384 cm™! were attributed to the symmetric and asymmetric vi-
bration of C=0 bonds, respectively [45]. Importantly, the vibration
peak at 747 cm~! corresponded to C—H bond of benzene rings
originated from the dicarboxylate ligands in MIL-53(Fe) [46,47]. In
addition, the characteristic peak at 538 cm~! indicated the pres-
ence of metal-oxygen bonding between 1,4-BDC and Fe(III) [48].
Furthermore, all MBx composites displayed characteristic peaks
around 3418 cm~! and 512 cm™!, which were attributed to —OH
bending vibration of H,O molecules and the Bi—O stretching vi-
brations in Bi;2017Cly, respectively [49,50]. Combing PXRD and FTIR
analysis, it could be considered that the successful formation of
MBx composites via ball-milling method.

Fig. 3 exhibited the morphologies of MIL-53(Fe), Bi12017Cl; and
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Fig. 2. (a) PXRD patterns and (b) FTIR spectra of MIL-53(Fe), Bi;2017Cl, and MBx composites.
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Fig. 3. SEM and HRTEM micrographs of (a) MIL-53(Fe), (b) Bi;20¢7Cl; and (c) MB100.

MB100. MIL-53(Fe) crystals displayed regular octahedrons
morphology with glossy surface, and the particle size were hun-
dreds of nanometers (Fig. 3(a)), which was accordance with pre-
vious studies [21]. The SEM and HRTEM micrographs (Fig. 3(b))
showed that the Bi;2017Cl, displayed the irregular nanosheet
structure, which possessed an uneven size of 100—500 nm in
length and 100—200 nm in width. The SEM micrograph of BM100

(Fig. 3(c)) suggested that Bij2017Cl; with different shapes were
covered on the surface of MIL-53(Fe) after ball-milling process. The
corresponding HRTEM image (Fig. 3(c)) further indicated that the
MBx composites can be successfully formed between Bi12017Cly
(black parts) and MIL-53(Fe) (grey parts). Additionally, the HRTEM
image of MB100 showed the fringe spacing of 0.206 nm, being
assigned to the (1 1 7) crystal plane of Bij2017;Cl, (JCPDS
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No0.37—0702). The above results indicated that Bi;2017Cl, was suc-
cessfully combined with MIL-53(Fe).

The binding states of the MB100 were detected by XPS instru-
ment. The survey spectrum proved that C, O, Cl, Fe and Bi elements
were present in the MB100 (Fig. 4(a)). The C 1s spectrum (Fig. 4(b))
ought to be divided into two peaks of 284.9, and 288.8 eV, which
corresponded to the C—C bond of the benzene ring and C=0 bond
presented in terephthalic acid, respectively [51]. The O 1s XPS
spectrum (Fig. 4(c)) should be curve-fitted into two peaks at 530.7
and 531.8 eV, respectively, which were ascribed to the Fe—O/Bi—0
and C=O0 functional groups [52]. The Cl 2p spectrum in Fig. 4(d)
was split up two binding energy peaks at 198.4 and 200.0 eV,
respectively, which was contributed to Cl 2p3j; and Cl 2py [53].
The Fe 2p spectrum in Fig. 4(e) indicated that the two peaks located
at 712.2 and 725.6 eV, which were indexed to Fe 2p3); and Fe 2pq3,
respectively [54]. Additionally, there was the other peak at 718.4 eV,
which was the satellite signal peak and proved the existence of
Fe(III) species in the MB100 [55,56]. Moreover, the characteristic
peaks at 159.6 eV and 164.9 eV in Bi 4f spectrum (Fig. 4(f)) were
correlated with Bi 4f7;; and Bi 4fs, respectively [57]. After com-
pounding MIL-53(Fe) and Bi;2017Cl; through ball-milling process,
the peaks in Bi 4f spectra of different MBx composites shifted to-
wards lower binding energies compared with pristine Bi;2017Cl,
confirming the existence of electron transfer from Bi;2017Cl, to
MIL-53(Fe) [58,59].

The UV—vis DRS spectra of the different photocatalysts were
demonstrated in Fig. 5(a). The results suggested that the maxima
absorption edge of MIL-53(Fe) was at approximately 438 nm, and
the Bi{3017Cl, exhibited visible light absorption at wavelength
about 599 nm. Additionally, with the increase dosages of Bi;2017Cly,
the absorption edge curves were gradually similar with that of pure
Bi12017Cl,. However, it was worth noting that all the as-prepared
MBx composites possessed absorption ability both in ultraviolet
and visible regions, revealing that they can be deemed as UV—vi-
sible-light-responsive photocatalysts.

The corresponding band gap energy (Eg) values were calculated
following Eq. (1) [60].

Ahv = k(hv - Eg)™? (1)

where A, h, v, and k represent the absorption coefficient, Planck’s
constant, the light frequency and a constant, respectively, n is res-
ted with the optical transition type of the photocatalyst. According
to the previous literatures, MIL-53(Fe) should be regarded as in-
direct semiconductor (n = 4) [61,62], whereas Bi;3017Cl, can be
deemed as direct semiconductor (n = 1) [27]. From the Tauc plots in
Fig. 5(b), the Eg values of MIL-53(Fe) and Bi12017Cl; were about
2.83 eV and 2.08 eV, respectively, which were close to the previous
literatures [38—42]. Furthermore, the Eg values of MB50, MB100,
MB200 and MB300 were estimated to be 2.59 eV, 2.68 eV, 2.73 eV
and 2.74 eV, respectively.

3.2. Cr(VI) removal

The Cr(VI) photoreduction efficiencies over Bij3017Cly, MIL-
53(Fe) and MBx composites were assessed under white light illu-
mination, as displayed in Fig. 6(a). It was obvious that Cr(VI) con-
centration hardly changed in the absence of MB100 after 120 min
illumination time. Furthermore, under the same experimental
circumstance, all the MBx composites exhibited better photore-
duction activities than that of pristine MIL-53(Fe) (68.2%) and
Bi12017Cly (23.3%) photocatalysts. Additionally, the MB100 dis-
played more effective white-light-responsive photocatalytic per-
formance for reducing Cr(VI), namely 99.2% of Cr(VI) ions can be
completely removed within 90 min. This result should be ascribed
to the excellent photo-generated carriers transfer at the MIL-
53(Fe)/Bi12017Cl, interface. Moreover, the pseudo-first-order dy-
namic model (In[Cy/C;] = kt) was used to calculate the photo-
catalytic rates over various photocatalysts. As shown in Fig. 6(b),
the order of k values was as follows: MB100 (0.0284 min~!) > MB50
(0.0246 min~!) > MB200 (0.0239 min~!) > MB300 (0.0146
min~!) > MIL-53(Fe) (0.0041 min~!) > Bi12017Cl, (0.0025 min~').
Meanwhile, the comparison of photocatalytic efficiency between
MB100 and the other categories of photocatalysts were listed in
Table S1 in the Electronical Supporting Information, suggesting that
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H. Li et al. / Journal of Alloys and Compounds 844 (2020) 156147

a b .
( )1.4- ()] — Bi,0,,Cl,
12 2.04
)
:. 1.04 2 —— MIL-53(Fe) 2.83 eV
— s E
g S5 =i
8081 N e
.g -;l 0 —%u
£ 06— miL-s3ro) - i 5
2 |—wmBso < Zn
< 0.4 —— MB100 N
MB200 0.54 5
0.2 —— MB300 :
— Bi”()'_( 'Ij / 26 28 30 32 34 36
0.0 . . . . . ] 0.0 2.08 eV Photo Energy (eV)
200 300 400 500 600 700 800 2 3 4 5 6
Wavelength (nm) Photo Energy (eV)

Fig. 5. (a) UV—vis DRS spectra and (b) Eg plots of Bi;,047Cl,, MIL-53(Fe) and MBx composites.

Ligh‘ on

—a— No catalyst

| MIL-53(Fe) —v— Bi, 0, €,
—>— MBS0 ——MB100

0.04

—— MB200 —e— MB300
T T T T T

0 30 60
Time (min)

T
-30

(b)0.030-

0.0254

0.0284

0.020

.|)

0.0154

k (m

0.0104

0.005

00-
MIL-53(Fe) Bi 0, Cl

:0,Cl, MBSO

MB200

MB100 MB300

Fig. 6. (a) Cr(VI) photoreduction curves and (b) the corresponding reaction rates over the different photocatalysts. Conditions: dosage = 0.5 g/L, Cr(VI) = 10 mg/L, pH = 2.

the MB100 can be deemed as an remarkable photocatalyst for
Cr(VI) reduction.

3.2.1. Effect of initial pH on Cr(VI) removal

The initial pH is important in Cr(VI) removal due to it not only
connects with the existing species of Cr(VI) ions but also changes
the surface electrical properties of the as-prepared photocatalysts
[59]. It can be observed that the pH value had a noticeable impact
on the adsorption-photocatalytic reaction process (Fig. 7(a)). When
the initial pH value was 2.0, 99.2% of Cr(VI) ions were reduced
within 120 min under white light irradiation. However, it was
obvious that the removal efficiencies of Cr(VI) significantly
decreased with the increasing of pH values. When the pH value was

8.0, only 13.3% of Cr(VI) ions were removed. This result should be
ascribed to the Cr(VI) ions displayed various forms under different
pH conditions [59]. Being compared to the neutral and alkaline
solutions, Cr,072~ and HCrOz were the dominating species when
pH is less than 6.0 [31], thus the abundant H" can enhance the
reduction process by photo-generated electrons (Equations (2) and
(3)) [58,62]. It was obvious that MB100 exhibited stronger
adsorption capacity when pH being 2.0 (36.4%), which was ascribed
to the corresponding zeta potential changed from positive to
negative with the increasing pH values. Fig. 7(b) showed that the
zero potential point of MB100 was 3.79, hence the surface of MB100
was inclined to adsorb Cr(III) cations and to electrostatically repel
Cr(VI) anions when pH was greater than 3.79. Moreover, under
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Fig. 7. (a) Effect of different initial pH on the Cr(VI) removal and (b) zeta potential of MB100 under various pH conditions. Conditions: photocatalyst MB100 dosage = 0.5 g/L,

Cr(VI) = 10 mg/L.
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high-pH conditions, the Cr(OH)s precipitates could generate on the
surface of MB100 (Equation (4)) [31], resulting a sharp decrease in
Cr(VI) reduction efficiency.

Cr,05 + 14H' + 6e~ — 2Cr°* + 7H,0 (2)
HCrOz + 7H* + 3e™ — Cr’* + 4H,0 (3)
CrOF~ + 4H0 + 3e” — Cr(OH)3 + 50H™ (4)

3.2.2. Reusability and stability of BM100

The cyclic experiment of Cr(VI) photoreduction was also per-
formed to explore the reusability and stability of the as-prepared
MB100. As depicted in Fig. 8(a), the photocatalytic efficiency of
MB100 still maintained at 87.7% after 4 runs of Cr(VI) removal ex-
periments [63]. Furthermore, the PXRD patterns of MB100 after the
photocatalytic reaction remained its original crystal structure
(Fig. 8(b)), suggesting that the chemical composition of MB100 was
not damaged even after four cycles of the photocatalytic processes.
Therefore, it can be concluded that MB100 can be deemed as a
prominent material for treating Cr(VI)-containing wastewater.

3.3. Possible photocatalytic mechanism

The separation efficiencies of photo-generated carriers of the as-
prepared materials were investigated by PL spectra and electro-
chemical impedance spectra (EIS) [64]. As illustrated in Fig. 9(a), the
distinct emission peaks at the excitation wavelength of 620 nm can
be clearly observed for all the materials. The Bi;2017Cl; and MIL-
53(Fe) exhibited comparatively strong PL intensity, while the MBx
composites possessed much lower PL signals. This experimental
phenomenon indicated that the construction of composites be-
tween Bi;2017Cl; and MIL-53(Fe) could accelerate migration rates
of photo-generated carriers. This speculation can be further
assessed by EIS analysis. As shown in Fig. 9(b), the diameters of arc
radius followed the order of Bi;017Cl; >  MIL-
53(Fe) > MB300 > MB200 > MB50 > MB100, confirming that
MB100 displayed more outstanding charge separation efficiency at
heterojunction interface than the other binary composite materials,

Bi12017Cl, were n-type semiconductors [66—69]. Normally, the
conduction band potential (Ecg) was more negative 0.1 eV than the
flat band potential (Epg) for most of n-type semiconductors [70].
Because the Egg values of MIL-53(Fe) and Bi{2017Cl, were —0.51
and —0.69 eV vs the Ag/AgCl electrode, respectively, so the Ecg of
Bi12017Cly and lowest unoccupied orbital (LUMO) of MIL-53(Fe)
were —0.59 and —0.41eV vs NHE. Based on the following calcula-
tion formula of Eg = Evp - Ecg, the valence band potential (Eyg) of
Bi12017Cl; and highest occupied orbital (HOMO) of MIL-53(Fe) were
determined as +1.49 and + 2.42 eV, respectively, which were
similar to the previous reports [27,38].

Free radical capture tests were also executed to affirm the major
active species involved in the photoreduction process. In this study,
isopropanol (IPA, 0.2 mmol L), ethylenediaminetetra acetic acid
disodium (EDTA-2Na, 0.2 mmol L!), p-benzoquinone (BQ,
0.2 mmol L) and silver nitrate (AgNOs3, 0.2 mmol L~!) were
applied to trap hydroxyl radical (-OH), photo-generated hole (h™),
superoxide radical (*0z) and photo-generated electron (e™),
respectively [71]. As shown in Fig. 11(a), the photoreduction effi-
ciency was significantly inhibited with the presence of AgNOs,
suggesting that photo-generated e~ played significant role in Cr(VI)
removal [72,73]. Furthermore, The °O; active species trapping
experiment was carried out under a nitrogen ambient to explore its
role in the reduction of Cr(VI). As shown in Fig. 11(a), the efficiency
of Cr(VI) reduction was promoted in N, atmosphere. This phe-
nomenon illustrated that trapping of electrons by O, was a
competing reaction for Cr(VI) removal [74]. On the other hand, this
result indicated that photo-generated electrons played major role
in the photoreduction process, which supported the result of using
AgNO3 as electron capture agent. Furthermore, it was worth noting
that the addition of BQ could suppress the photocatalytic efficiency
in this study, revealing that the °*O2 was an active radical in
reducing Cr(VI) ions. The similar phenomena can be found in the
other Cr(VI) photoreduction reaction systems from our previous
studies [59,60]. It was interesting that the addition of IPA also
caused the decrease of Cr(VI) removal, which should be ascribed to
the equilibrium transmitting to Cr(VI) as shown in Equations
(5)—(7) [59]. Additionally, the photocatalytic activity was rein-
forced by introducing EDTA-2Na, which was attributed to the re-
action between EDTA-2Na and h™ could enhance the migration and
transfer of photo-generated electrons [31].

which was the major factor for determining the apparent photo- *03 + H+ — °*HO, (5)
catalytic reaction rate [65].
To explore the Cr(VI) removal mechanism over the MB100, the *HO, + *03 + H* — Hy0; + 0, (6)
valence states of MB100 were explored by Mott-Schottky mea-
surements. Fig. 10 showed the C~2 value was positively propor- H,0; + Cr(1ll) + H™ — Cr(VI) + H,0 + *HO (7)
tional to the potential, indicating that both MIL-53(Fe) and
(a}m]_ 99.2% (b)

Removal percentage (%)

before photocatalysis

Intensity (a.u.)

10 20 30 40 50 60 70
2-Theta (degree)

Fig. 8. (a) Recycling experiments for the Cr(VI) reduction over the MB100 and (b) PXRD patterns of MB100 before and after the cyclic experiments.
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Fig. 11. (a) Reactive species trapping experiments with different scavengers, (b)—(c) ESR spectra of DMPO-*03 and DMPO--OH adducts generated during the photoreduction

process.

Based on the aforementioned results, a Z-scheme photocatalytic
mechanism was described in Fig. 12. Firstly, both Bi12017Cl, and
MIL-53(Fe) were excited by used xenon lamp to generate photo-
generated electrons and holes. Then, the produced electrons on
the LUMO of MIL-53(Fe) were inclined to couple with holes on the
VB of Bi;2017Cly, enhancing the photo-generated carriers transfer
and accumulating more free electrons on the CB of Bi;2017Cl;. Since
the Ecg of Bi12017Cl, was estimated as —0.59 eV vs NHE, which was
more negative than Cr(VI)/Cr(IIl) potential (+1.05 eV vs NHE) [60].
As a result, Cr(VI) ions could be effectively transformed into Cr(III)
on the CB of Bi;2017Cl,, Meanwhile, the remaining holes on the
HOMO of MIL-53(Fe) may react with H,O to generate -OH radicals
(H0/-OH redox potential being 2.40 eV vs NHE) [59], which was
demonstrated to play only a small role in Cr(Ill) oxidation. This

behavior can kill two birds with one stone, namely further
improving the separation of photo-generated charge carriers [71].
Moreover, the Fes-p3-oxo clusters in MIL-53(Fe) could also trigger
the Cr(VI) reduction process, since the linker to metal cluster charge
transfer (LCCT) may cause the reduction of Fe(Ill) to Fe(Il), which
was beneficial to Cr(VI) removal [14,39].

To verify the above conjecture, ESR technique was applied to
further affirm the major reactive species formed during the
photoreduction process. As depicted in Fig. 11 (b) and (c), con-
spicuous signals of DMPO-°0; and DMPO--OH adducts were
detected after the white light illumination for 5 and 10 min, qual-
itatively confirming the generation of *02 and -OH radicals in the
experimental system. Considering that the Eyp of Bi;2017Cl, was
more negative than the H,O/-OH redox potential [59], so it was not
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Fig. 12. A schematic diagram of Cr(VI) photoreduction over the MB100 under white light illumination.

thermodynamically allowable for the -OH production on the VB of
Bi12017Cl,. Therefore, the photocatalytic mechanism in this study
was determined to be Z-scheme rather than Il-scheme reaction
mechanism [75,76].

4. Conclusions

Z-scheme MBx composites were easily constructed, which
exhibited improved Cr(VI) reduction performances than the MIL-
53(Fe) and Bi;2017Cly under white light irradiation. Several char-
acterization techniques including PL and electrochemical analysis
proved that the formation of composites can facilitate migration
and separation of photoinduced charge carriers. Moreover, pH
values played significant role in the Cr(VI) removal. Meanwhile, the
cycle experiments demonstrated that the MB100 composite
possessed good stability and reusability. The findings in this
research supply a novel insight into fabrication of bismuth-rich
bismuth oxychloride/MOFs hybrids photocatalysts, which might
be had great potential for treating Cr-containing wastewater.
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