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ABSTRACT

Z-scheme g-C3N,4/UiO-66 (BGxUy) heterojunctions constructed from 3D UiO-66 and 2D g-C3N, sheets were
facilely fabricated using ball-milling method, which were characterized by scanning electron microscopy (SEM),
transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-
ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS),
N, adsorption-desorption measurement (BET), thermogravimetric analysis (TGA), UV-Vis diffuse reflectance
spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy
(EIS), electron spin resonance (ESR) and density functional theory (DFT) calculations. The photocatalytic ac-
tivities of Cr(VI) reduction over the BGxUy heterojunctions were tested upon the irradiation of white light. The
influence factors on photocatalytic performances of BG60U40 like different organics, pH and different co-ex-
isting foreign ions (ions in lake water, tap water, simulated sea water, and simulated leather tanning water) were
clarified. The experiment results demonstrated that the optimal BG60U40 exhibited superior Cr(VI) reduction
efficiency than pristine UiO-66 and g-C3N,4 due to the declined recombination of photo-induced charge carriers.
As well, the heterojunction displayed good reusability and stability in the cyclic experiment. The corresponding
Z-scheme mechanism of photocatalytic Cr(VI) reduction was proposed and verified by electrochemical analysis,
ESR measurement and DFT calculations.
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1. Introduction

UiO-66, as a typical metal-organic framework (MOF), attracted
wide attention due to its ultrahigh surface area along with ultrahigh
thermal/chemical stability [1-5]. Up to now, it had been applied in
wide research areas like catalysis [6,7], gas adsorption/separation
[8-12], photocatalysis [12-18], adsorptive removal of pollutants from
wastewater [19]. UiO-66’s photocatalytic activity was firstly tapped to
produce H, gas upon the irradiation of ultraviolet lamp (A = 300 nm).
However, UiO-66 exhibited the limited photocatalytic performances,
which could be attributed to their declining photo-induced electron-
hole charge separation and limited light utilization ability
[12-17,20,21]. To overcome the above-stated drawbacks of UiO-66, the
metal-free graphite-like C3N,4 (g-C3N,4) was selected to construct binary
g-C3N4/Ui0-66 heterojunction composites [22,23]. Yuan and co-
workers constructed the g-C3N,/UiO-66 quasi-polymeric composites
via annealing to accomplish enhanced H, production under the visible
light [24]. Liu and co-workers prepared g-C3N,4/UiO-66 nanohybrids by
in-situ solvothermal method to decompose rhodamine B (RhB) upon the
visible light illumination [25]. Zhou and coworkers fabricated g-C3N,/
UiO-66 heterojunction using facile annealing method, which was used
to decompose methylene blue (MB) efficiently under visible light [26].
Ye and coworkers fabricated g-C3N4/UiO-66 hybrids via electrostatic
self-assembly method to carry out CO, transformation under the visible
light [27]. To our best knowledge, up to now no study on photocatalytic
Cr(VI) reduction over Z-scheme g-C3N,/UiO-66 heterojunction was
reported.

Hexavalent chromium usually exists in wastewater from chromate
manufacturing, electroplating, paint-making, leather tanning and other
industries [28-31]. Hexavalent chromium is easily adsorbed by human
body, and it can exert potential threat to human health through di-
gestion, respiratory tract, skin and mucosa [30]. When Cr(VI) is re-
duced to Cr(Ill), the toxicity of chromium can be greatly reduced
[28,32]. Therefore, it is of great significance to eliminate Cr(VI) from
wastewater. In recent years, more and more attentions concerning Cr
(VD) photoreduction into Cr(IlI) have been paid to its application in
wastewater treatment [22,33], which is easily to be removed as pre-
cipitated solid wastes like Cr(OH)3 [30].

Within this paper, series two-dimensional/three-dimensional (2D/
3D) g-C3N4/UiO-66 composites were facilely prepared via ball-milling
method (Scheme 1), which were characterized and used as white light -
responsive photocatalysts to achieve outstanding reduction of hex-
avalent chromium under lower pH conditions.

2. Experimental
The used chemicals, the characterization instruments, and DFT

computation details were listed in electronic Supplementary
Information (ESI).
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2.1. Preparation of g-C3N4/UiO-66 composites

The g-C3N,4 was prepared by pyrolysis of urea without any template
[34]. Briefly, a certain quantity of urea pellets (10.0 g in this study)
were placed in a crucible with cover and were heated up to 500 °C for
120 min using a muffle furnace. The obtained bulk g-C3N4 were ultra-
sonically exfoliated in deionized (DI) water for 6h, and the g-C3N4
sheets were separated by centrifugation (yield 4.0% based on urea).

UiO-66 octahedrons were solvothermally synthesized following the
procedure reported in previous report [24]. The solutions of 40.0 mg
ZrCly and 28.5 mg Hobdc (benzene-1,4-dicarboxylic acid) dissolved in
5.0mL DMF (N,N-dimethylformamide) were mixed completely, in
which 3.0 mL acetic acid was added to regulate the UiO-66’s mor-
phology. The matrix was transferred into a 25.0 mL teflon-lined bomb,
followed by being heated at 120 °C for 24 h. Finally, the UiO-66 samples
were obtained via centrifugation after cooling to ambient temperature.

The g-C3N4 and UiO-66 samples were mixed with the aid of ball-
milling (30 Hz, 20 min). The obtained matrix was heated with an in-
crease rate of 5°Cmin~! and maintained at 300 °C for 120 min under
the N, atmosphere in a tube furnace. The composites with the various
mass ratios of g-C3N4/UiO-66 were obtained, referred as BGxUy (the
letters “B”, “G” and “U” are abbreviated for ball milling, g-C3N,4, and
UiO-66. The variables “x” and “y” are the percentage of g-C3N, and
Ui0-66 in the total mass of composites, respectively).

2.2. Photocatalytic activity

The 200.0 mL K,Cr,0, aqueous solution with initial concentration
of 10.0 mg L~! (based on Cr(VI)) was selected to evaluate the photo-
catalytic properties of heterojunctions with the photocatalyst dosage of
500.0 mg L' under white light provided by a Xe light with the power
of 300 W (Beijing Aulight Co., Ltd). After the adsorption-desorption
equilibrium was accomplished within 60 min in the dark condition, the
targeted solution was irradiated by 300 W white light. During illumi-
nation, 1.5 mL solution was extracted from the reactor every 20 min for
subsequent determination. The residual Cr(VI) content in the filtrate
was measured with the 1,5-diphenylcarbazide method [35] on a Laspec
Alpha-1860 spectrometer. The schematic illustration of the experi-
mental set-up for photocatalytic reaction and the white light spectrum
were depicted in Scheme 2 and Fig. S1, respectively.

3. Results and discussion
3.1. Characterizations

The PXRD patterns of g-C3N4, UiO-66, and series UiO-66,/g-C3N4
(BGxUy) composites were depicted in Fig. 1a. It was quite obvious that
the PXRD patterns of UiO-66 were in good agreement with the simu-
lated ones from single crystal structure data [36] and related references
[37]. As well, the PXRD patterns of obtained g-C3N4 were well-matched
with the standard one (JCPDS No. 87-1526), in which the characteristic
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Scheme 1. Diagrammatic sketch of the g-C3N4/UiO-66 composites fabricated via ball-milling and thermal treatment.
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Scheme 2. Schematic diagram of the experimental device for photocatalytic reaction.

diffraction peak at 27.4° was attributed to (002) planes of g-C3N4
sheets and the typical inter-plane stacking graphitic layered structure
[38,39]. In the PXRD patterns of UiO-66/g-C3sN4 (BGxUy, especially for
BG90U10, BG80OU20 and BG70U30 with low UiO-66 content) compo-
sites, the characteristic PXRD peaks of both g-C3N, and UiO-66 could be
observed clearly, and no additional peaks of crystalline impurities could
be observed, indicating that the original structures of g-CsN4 and UiO-
66 were maintained well, and no crystalline impurities were produced
during the ball-milling process. It was remarkable that the character-
istic peak at 27.4° of g-C3N, became more obvious with the increasing
g-C3N,4 content. The unaltered backbone structures of g-C3N4 and UiO-
66 in BGxUy composites were confirmed by FTIR (Fig. 1b). The peak
located at 810 cm ™! can be assigned to the characteristic tri-s-triazine
rings in g-C3N, while the intense peaks located between the
1200-1650 cm ~ ! could be attributed to the C-N rings with stretching
modes in g-C3Ny4 [40,41]. As well, with the increased percentage of
Ui0-66 in the hybrids, the absorption peaks ranging from 600 cm ™" to
800 cm ™! could be observed more clearly, which were associated to Zr-
O, in both longitudinal and transverse modes [42,43].

The formation of electronic interactions is crucial to achieve the
efficient interfacial charge transfer between g-C3N,4 and UiO-66 [44].
Therefore, XPS was carried out to investigate the interaction between g-
C3N,4 and UiO-66 in UiO-66/g-C3N4 composite. As depicted in Fig. 2a,

the XPS determination displayed that the two obvious N 1s and Zr 3d
peaks could be attributed to the g-C3N4 and UiO-66, respectively. The
peaks with binding energies of 400.43, 398.84 and 398.14 eV could be
ascribed to the characteristic N-(C)3, pyridinic N, and C-N = C bond of g-
C3Ny, respectively (Fig. 2b) [45-47]. After the combination of g-C3N,4
and UiO-66 (like BG60U40), it was obviously to find that the binding
energies of N 1s belonging to N-(C)s, pyridinic N, and C-N=C bond
were shifted from 400.43, 398.84 and 398.14eV in g-C3N,4 to 400.1,
398.57 and 398.1 eV in BG60U40 [48-50]. It could be attributed to the
redistribution of additional electrons in BG60U40 system, and the shift
of N 1s peaks in g-C3N,4 towards the low binding energy direction fur-
ther confirmed the electron transfer from UiO-66 to g-C3N, after their
coupling [51].

The smooth octahedral of pristine UiO-66 with particle size ranging
from 500 to 1000 nm (Figs. 3a and 4a) and the g-C3N, sheets (Figs. 3b
and 4b) can be observed via SEM and TEM. After ball-milling treatment,
it can be found that the g-C3N,4 sheets were wrapped onto the surface of
octahedral UiO-66 to fabricate rough UiO-66/g-C3N, composite (like
BG60U40) without any destroy toward the structures of UiO-66 and g-
C3Ny (Figs. 3¢, d, 4c and d). To elucidate the microscopic structure and
element content of the BG60U40 composites, a more detailed in-
vestigation was conducted using HRTEM and SEM-EDS. Obviously, the
g-C3N4 sheets are wrapped onto UiO-66 (Fig. 5), which is further
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Fig. 1. (a) The XRD patterns and (b) the FTIR spectra of the pristine g-C3N,4, UiO-66 and series composites.
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Fig. 2. The XPS spectra of pristine g-C3N,4, UiO-66 and BG60U40: (a) survey scan, (b) N 1s.

confirmed by the distribution of O, Zr (the characteristic element from
UiO-66) and N (the characteristic element from g-C3N,) throughout the
BG60U40 composite (Fig. 6). All the above-stated characterizations
indicated the successful construction of g-C3N,/Ui0-66 (BGxUy) com-
posites. It was more facile to construct the g-C3N4/UiO-66 (BGxUy)
composites via ball-milling than annealing [24,26], electrostatic reac-
tion [27] and in-situ solvothermal method [25].

The UV-Vis DRS was recorded to characterize the optical absorption
property of all g-C3N,4/UiO-66 heterojunctions. The E, value (band gap
energy) was calculated according to the Eq. (1) [52].

ahv = A(hv — E,)"/? 'e))

where a, h and v are the diffuse absorption coefficient, the light con-
stant, and the frequency, respectively. n is judged by the optical tran-
sition type of the semiconductor (indirect (n = 4) or direct (n = 1)). In
this study, n is assigned as 4 because BG60U40 is indirect semi-
conductor, which matches well with the previous reports [53,54].

As depicted in Fig. 7a and 7b, UiO-66 and g-C3N,4 displayed ab-
sorption edges at 320 nm with E,; being ca. 3.88 eV and 443 nm with E,
being 2.80 eV, respectively. In contrast, the absorption edge of BGxUy
exhibited obvious red shift to ca. 446 nm with E; being ca 2.78eV,

implying that BGxUy composites could be excited by the visible light
with longer wavelength. The similar findings are observed in the g-
C3N,4/UiO-66 composite prepared via electrostatic reaction (2.78 eV)
[27]. However, the Eg of the as-prepared BG60U40 in our work was
narrower than those of counterpart composites prepared via in-situ
hydrothermal method (3.79 eV) [25] and annealing treatment (2.92 eV)
[26], indicating that ball-milling followed by thermal treatment facil-
itates the construction of heterojunction responsive to visible light.
And, it was observed that the visible light responsive g-C3N4 dominates
the optical properties of the BGxUy composites, which may be due to
the interface formed between g-C3N4 and UiO-66.

The Mott-Schottky plots of the pristine g-C3N, and UiO-66 were
measured at different frequencies to estimate the flat band potential as
shown in Fig. 7c and 7d. And the positive relationship of the obtained
C™2 to the potential confirmed that they are typical n-type semi-
conductors [55]. The conduction band (CB) of the pristine g-C3N, and
UiO-66 were determined to be ca. —1.11 eV and —0.75eV (Ecg = Eyg —
E,) [56] versus the Ag/AgCl electrode at pH = 7, respectively.

Fig. 3. The SEM images of (a) pristine UiO-66, (b) pristine g-C3N,4, (c) and (d) BG60U40 composite.
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Fig. 4. The TEM images of (a) pristine UiO-66, (b) pristine g-C3Ny4, (c) and (d) BG60U40 composite.

3.2. Photocatalytic performances

3.2.1. Photocatalytic Cr(VI) reduction
The photocatalytic performances of Cr(VI) reduction over all the
samples were studied under white light irradiation. Upon the

(2)

UiO-66

irradiation of white light, all BGxUy composites displayed higher
photocatalytic performances toward Cr(VI) reduction than those of
pristine g-C3N4 and UiO-66, in which BG60U40 composite exhibited
best Cr(VI) reduction activity with efficiency of 99% within 40 min
(Fig. 8a). The kinetic plots of photocatalytic Cr(VI) reduction over

B e 200 nm .

Fig. 5. The HRTEM images of BG60U40 composite.



X.-H. Yi, et al.

Chemical Engineering Journal 375 (2019) 121944

Fig. 6. The EDS elemental mappings of BG60U40 composite.

BGxUy composites were fitted to the pseudo-first order model (In[C/
Col = —kt) [57], in which Cy, C and k are the initial Cr(VI) con-
centration, the residual Cr(VI) concentrations at different reaction times
and reaction rate constant, respectively. The photocatalytic Cr(VI) re-
duction rates (k values) over the different photocatalysts followed the
order of BG60U40 > BG70U30 > BG80U20 > g-C3N,/UiO-66 ma-
trix > BG50U50 > BG90U10 > g-C3N4 > UiO-66 (Fig. 8b), which
exhibited saddle-shaped curve with the introduced contents of g-C3N,4
in BGxUy composites. It is noteworthy that the g-C3N4/UiO-66 matrix
refers to the physical mixture of g-C3N, (60 mg) and UiO-66 (40 mg)
without further ball-milling and thermal treatment. Comparing with the
counterpart photocatalysts previously reported, the BG60U40 compo-
site also exhibited superior catalytic activity toward Cr(VI) reduction
under the similar reaction conditions (Table 1). It was worthy to noting
that the introduction of g-C3N,4 onto UiO-66 led to the decreasing sur-
face area from 1014.5m? g~ ! for pristine Ui0-66 to 434 m? g~ ! for
BG60U40 and 100.1 m? g~ ! for BGOOU10 (Fig. S2 and Table S1). In the
view of photocatalytic Cr(VI) reduction performances, the order of
BG60U40 > BG70U30 > BG80U20 > BG90U10 matched well with
the enhanced surface area, which were comparable to the other g-C3N,/
MOF composites [23]. Generally, the increasing surface area can lead to
the enhanced photocatalytic performance of the catalyst, as it can offer
more active sites to boost the charge transfer over the composite in-
terfaces along with the utilization of visible light [58]. However, ex-
cessive UiO-66 (like BG50U50) may deteriorate the quality of effective
heterogeneous interface in BGxUy, which is not beneficial to charge
transfer of the heterogeneous interface [59].

3.2.2. Effect of initial pH

It is worthy to noting that the photocatalytic reaction is generally
heavily affected by the solution pH, considering that pH can influence
both the acid-base condition of the reaction system and the existing
species of the treated targets [34]. As illustrated in Fig. 9a and b, the
photocatalytic Cr(VI) reduction efficiencies and the reaction rates (k
values) [34] varied significantly under different pH conditions. The
reduction efficiencies increased significantly with the decreasing pH
(99.0%, 51.2%, 28.0%, 23.1%, 22.9%, 21.0% and 25.0% at pH being
2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0, respectively). Under acidic en-
vironments, the Cr(VI) photoreduction over BG60U40 was achieved
following Eq. (2) and (3) [65,66], in which the excessive H* was
beneficial to the transformation from Cr(VI) to Cr(III) [30]. In contrast,
under alkaline environment, Cr(VI) is mainly presented as Cro,2~ [67],
and the corresponding Cr(VI) reduction was accomplished following
Eq. (4) [34]. Moreover, the formed Cr(OH); precipitates under high pH
condition will mask the active sites of BG60U40 photocatalyst, resulting
into the declining Cr(VI) reduction performance [30,68].

BGxUy + hv — BGxUy(h* + e) 2)
Cp0%™ + 14H* + 6e~ — 2Cr** + 7TH,0 3)
CrO¥™ + 4H,0 + 3¢~ — Cr(OH); + 50H- (@)

3.2.3. Influence of different hole scavengers

Upon the irradiation of light with suitable wavelength, the photo-
induced electron-hole pair will be produced. During the Cr(VI) reduc-
tion process, if the holes (h*) were consumed, the separation of
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Table 1

Comparison of the photocatalytic Cr(VI) reduction activities of some counterpart photocatalysts.
Photocatalyst/Amount (mg) V (mL)/Co (mg L™ 1)/pH Light source T (min) 1st cycle efficiency (%) Ref.
UiO-66(NH,)/20 40/10/2.0 300 W Xe lamp 80 97 [55]
8-C3N4/MIL-53(Fe)/20 50/10/2.0-3.0 500 W Xe lamp (> 420 nm) 180 929 [28]
g-C3N4/NH,-MIL-101(Fe)/20 40/10/2.0 300 W Xe lamp (> 400 nm) 60 100 [60]
g-C3N,4/MIL-100(Fe)/100 200/10/2.0 300 W Xe lamp 80 97 [34]
8-C3N4/TiO42/20 20/5.2/3.0 300 W Xe lamp (> 400 nm) 300 96 [61]
g-C3N4/Zn0/50 25/6.5/7.0 500 W Xe lamp (> 400 nm) 100 78 [62]
8-C3N4/Bi;2Ge020/300 100/10/2.5 300 W Dy lamp (> 400 nm) 180 100 [63]
g-C3N4/GO/BiFe03/500 200/5/2.0 300 W Xe lamp (> 400 nm) 90 100 [64]
g-C3N,4/Ui0-66/100 200/10/2.0 300 W Xe lamp 40 99 This work
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Fig. 9. (a) The effect of initial pH on Cr(VI) reduction. (b) The k values over the different of initial pH photocatalysts. (c) Photo-reduction of Cr(VI) with different hole
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sea water) or 30 mg L~ (simulated leather tanning waste water), 200 mL, pH = 2.0.

electron and hole charge would be accelerated and the Cr(VI) reduction
would be enhanced. To test the influence of some organics toward Cr
(VD) reduction, some organics like citric acid, tartaric acid and oxalic
acid were chosen as hole scavengers to conduct series experiments at
pH = 2.0. As illustrated in Fig. 9c, the introduction of selected hole
scavengers can increase photocatalytic Cr(VI) reduction activity, fol-
lowing the order of tartaric acid (two a-hydroxyl groups) > citric acid
(one a-hydroxyl groups) > oxalic acid (zero a-hydroxyl groups), which
was comparable to the previous reports [34,69,70]. The consumption of
holes via the addition of organics will lead to more electrons being
escaped to reduce Cr(VI), further increasing the Cr(VI) reduction effi-
ciency and reaction rate.

3.2.4. Photocatalytic Cr(VI) reduction performances in different simulated
wastewater samples

To investigate the influence of co-existing ions and the possibility of
practical applications, different aqueous Cr(VI) solutions formulated by
tap water, lake water, and simulated sea water, simulated leather tan-
ning water were tested over BG60U40 under white light. The para-
meters of water quality are shown in the Table S2 [71,72]. The results
revealed that the Cr(VI) reduction performances were inhibited in si-
mulated wastewater formulated with tap and lake water (Fig. 9d). It
was found that the Cr(VI) reduction efficiencies and reaction rates in
lake water was superior to those in tap water solution, indicating that
the dissolved organic matter (DOM, which was generally quantified by
both TOC and UV,s4, and listed in Table S3) in the lake water can
deplete the photoinduced holes to accelerate the separation of photo-
induced electron-hole pairs. Also, the photocatalytic activities of
BG60U40 in simulated sea water and leather tanning waste water were

obviously weakened, in which the hexavalent chromium was reduced
completely up to 160 min (Fig. 9d). It may be due to the inhibition of
photocatalysis by high concentration of foreign ions in simulated sea
water and simulated leather tanning waste water [71].

3.2.5. Reusability and stability of BG60U40

To further valuate the practical application potential of BG60U40
photocatalyst, six runs’ photocatalytic reduction experiments were
carried out. As depicted in Fig. 10a, the photocatalytic Cr(VI) reduction
performance of BG60U40 displayed no obvious decline after six runs’
usage, implying that BG60U40 photocatalyst was stable and highly
efficient during long-term operation. The stability of BG60U40 was
further confirmed by the nearly identical PXRD patterns (Fig. 10b),
SEM and TEM (Fig. S3). As shown in Fig. 10b, the major XRD peaks
remained, but the peak width is wider than that before photocatalysis,
indicating that the structure of the composites was slightly affected.
However, it was observed from the SEM and TEM images that no no-
ticeable changes were happened to the morphologies of BG60U40 (Fig.
S3).

3.2.6. The mechanism of photocatalytic Cr(VI) reduction over BG60U40
Photoluminescence (PL) spectroscopy and electrochemical im-
pedance spectroscopy (EIS) measurements were introduced to elucidate
the effect of g-C3N,4 coating and its interfacial contact with UiO-66 on
photocatalytic reduction mechanism. The higher photoluminescence
signal implied the higher recombination rate of photoinduced electrons
and holes [73]. In the PL spectrum of pristine g-C3Ny, a strong emission
peak could be observed at ca. 440 nm. However, the emission peak
quenching at 440 nm occurs over BG60U40 (Fig. 11a), indicating that
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Fig. 10. (a) The cyclic experiments of photocatalytic Cr(VI) reaction over BG60U40. (b) PXRD patterns of BG60U40 before and after 6th cyclic experiments.

BG60U40 can maintain the longer lifetime of photo-induced charge
carriers than g-C3Ny4. The EIS measurements as illustrated in Fig. 11b
further clarified the charge-transfer effect of series BGxUy composites
and the individual components. It was clear to find the diameter of arc
radius followed in the order of g-
CsN4 > BG70U30 > BG50U50 > BG90U10 > UiO-

66 > BG80U20 > BG60U40, confirming that 2D/3D BG60U40 het-
erojunction shows better charge carrier separation and interfacial
charge transfer than the pristine g-C3Ny4, UiO-66, and other composites
with different ratio. The equivalent circuit (inset of Fig. 11b) is obtained
to fit the electrochemical impedance spectra, in which Rs, Rct and CPE
are the solution resistance, the charge transfer between the electrode
and the electrolyte along with the constant phase element, respectively
[74]. The Rct value of BG60U40 (105 () is significantly lower than
those of g-C3N4 (502 Q) and UiO-66 (340 Q) (Table S4), which indicates
that BG60U40 can improve the separation and transmission efficiency
of photogenerated electron-hole pairs [75].

In order to ascertain the primary active species in the Cr(VI) re-
duction process over BG60U40 and to get insight into the corre-
sponding reaction mechanism, the ESR measurements were conducted
to determine the formed active species over the BG60U40, g-C3N,4 and
Ui0-66 (Fig. 11c—f). The characteristic ESR signals of both-O,™ and -OH
with intensity 1:1:1:1 and 1:2:2:1 are detected over BG60U40 upon
white light irradiation; however, no signal is detected in the dark
condition. As well, the corresponding signal intensities at 10 min’s il-
lumination are stronger than those at 5 min, which confirms that both
‘O,” and -OH are produced in the photocatalytic process. It was also
worthy to noting that -OH signals are observed over UiO-66 upon the
white irradiation (Fig. 11f), but -OH signals can’t be detected over
pristine g-C3N,4 under the identical conditions (Fig. 11e). Considering
that the position of the valence band (VB, 1.89 eV vs NHE) of g-C3N, is
higher than the standard potential (2.40 eV vs NHE) of the OH™/-OH
pair (Fig. 12d), the photogenerated holes on the surface of g-C3N4
cannot react with OH/H,0 to form -OH. On the other hand, the posi-
tion of HOMO (3.35 eV vs NHE) of UiO-66 is lower than that of OH/
-OH pairs (2.40 eV vs NHE), which may oxidize OH™ or H,O to form -OH
[26].

The high charge utilization efficiency in the BG60U40 hetero-
structure drives us to further study the interactions between the g-C3N,4
and UiO-66 by density functional theory (DFT) calculations. The most
stable structure of monolayer g-C3N4 on UiO-66 surface as shown in
Fig. 12a, and the chemical interaction can also be affirmed by the
electron density difference as depicted in Fig. 12b. The differential
charge density calculation indicates that the electron density around C
atoms (blue) on UiO-66 surface decreased, while the electron density
around C and N atoms (yellow) of monolayer g-C3N, increased after the

formation of BG60U40 heterostructure. The Bader charge analysis is
carried out to evaluate the charge transfer within BG60U40, in which
the atom numbers in the Bader charge analysis are illustrated in Fig. S4,
Tables S5 and S6, respectively. It was found that the positive charge of
carbon atoms on the surface of UiO-66 increased significantly, espe-
cially at the position bonded with three N atoms from g-C3Ny, in-
dicating that the electrons over the surface of UiO-66 are transferred to
g-C3N4 within BG60U40. In all, the DFT calculation results are in ac-
cordance with the above experimental results.

In all, the Z-scheme mechanism of photocatalytic Cr(VI) reduction
over g-C3N,/Ui0O-66 is proposed as illustrated in Fig. 12d. And, the
active species in the photocatalytic reaction system, both pure materials
can produce photo-induced electrons and holes excited by white light.
The photo-generated holes tend to be remained in the HOMO of UiO-
66, meanwhile, the photogenerated electrons can be transferred from
the UiO-66’s LUMO to the g-C3Ny4’s CB. Thus, the separation of photo-
generated e~ and h™ can be promoted. To study the roles of active
species in the photocatalytic Cr(VI) reduction over BG60U40, series
capture experiments toward active species were designed and con-
ducted (Fig. 12c). In detail, isopropyl alcohol (IPA, 0.2 mmol LY,
EDTA-2Na (0.2 mmol L™) and AgNO5 (0.2 mmol L) were introduced
to capture -OH radicals, h* and e [76,77], respectively. As well, ni-
trogen gas is introduced in the experiment to remove dissolved oxygen
gas in reaction solution to avoid the formation of ‘O5~ [78]. The effi-
ciency of Cr(VI) reduction was decreased obviously when the e of the
system has been trapped, which demonstrated that hexavalent chro-
mium is reduced to trivalent chromium by electrons over the surface of
g-C3Ny via sequential one-electron-transfer steps (Eq. (5)) [78,79]. And
‘05" is considered to be a mediator for reducing Cr(VI) [64,80,81] via
Eq. (6) [78], which can be generated as the CB value of g-C3N, is
—0.91 eV vs. NHE, much more negative than the potential of O5/-O,~
(—0.33 eV vs. NHE). It had been reported that -O,~ react with Cr(VI) to
generate Cr(V) (Eq. (7)) [82], so that the Cr(VI) reduction efficiency
over BG60U40 decreased obviously in the N, atmosphere in this work,
implying that -O5™ is the active specie to reduce Cr(VI). And, the Cr(VI)
reduction efficiency decreased when -OH has been trapped by IPA,
which was assigned to the equilibrium shifting toward Cr(VI) as listed
Egs (6), (8) and (9) [78,82]. When the active species of h™ in the
photocatalytic reaction was trapped, the Cr(VI) reduction efficiency is
improved significantly, indicating that H,O or OH™ have been oxidized
by h* to generated the active species -OH (Eq. (10)) [78]. The -OH
formation will mainly facilitate the separation of electrons and holes to
further promote the Cr(VI) reduction activity, and might exert minor
effect on the oxidation from Cr(V) back to Cr(VI) as displayed in Eq.
(11) [79]. As illustrated in Fig. 12¢, the Cr(VI) reduction activity of
BG60U40 was significantly restrained in the presence of AgNOg,
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Fig. 11. The PL spectra (a), EIS analysis and equivalent circuit (inset) of the samples (b), the ESR spectra of active species trapped by DMPO in aqueous dispersion for

‘05~ over BG60U40 (c) along with -OH over (d) BG60U40, (e) g-C3Ny, (f) UiO-6

implying that e~ was the major active species. The improved Cr(VI)
reduction behavior was due to that the Z-scheme heterostructures could
facilitate to effectively separate photoinduced electron-hole pairs, as
well to improve the redox capacity of photocatalysts with the aid of the
increase in redox potential [83].

crov) S er(v) S crav) S er(i

(5)
0, +e — 05 (6)
-03 + Cr(VI) - Cr(V) + O, @
2:0; + 2H" - H,0, + O, 8
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6.

10

2H, O+ h* — 2-OH + H* (10)

Cr(V) + h*/-OH — Cr(VI) + OH~ an

4. Conclusions

The facile construction of series 2D/3D g-C3N4/UiO-66 (BGxUy)
composites was achieved, in which the optimal BG60U40 composite
photocatalyst displayed superior Cr(VI) reduction performance than
pristine g-C3N4 and UiO-66 upon the illumination of white light. The
experiment results of electro-chemical and PL measurements showed
that the improved photocatalytic reaction was assigned to the enhanced
charge transfer over the interface of Z-scheme heterostructure. As well,
the influences of pH and hole scavengers on photocatalytic Cr(VI)
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respectively. (b) Electron density difference around UiO-66 surface and g-C3N, fragment when g-C3N4 wrapped on the UiO-66 surface from the top view. The yellow
area represents increasing of electron density, blue area indicates decline of electron density.(c) Effects of different scavengers on Cr(VI) reduction in the presence of
BG60U40. (d) A simplified diagram of photocatalytic Cr(VI) reduction mechanism of g-C3N,4/UiO-66. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

reduction were tested. It was worthy to noting that Cr(VI) reduction
was also accomplished for simulated wastewater prepared with tap
water and lake water, simulated sea water (high salinity wastewater)
and simulated leather tanning wastewater. The ESR determination,
series caputure experiments and DFT calculations clarified the corre-
sponding Cr(VI) reduction mechanism. Finally, the cycling tests ex-
hibited that the BG60U40 composite was stable and recyclable. This
work further tested the combination of MOFs and g-C3N4 was a pro-
spective strategy for enhancing the photocatalytic performance.
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