Robust Cr(VI) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: Performances and mechanism insight with or without tartaric acid

Yu-Hang Li a, Xiao-Hong Yi a, Yu-Xuan Li a, Chong-Chen Wang a, Peng Wang b, Chen Zhao a, Weiwei Zheng b

a Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
b Department of Chemistry, Syracuse University, Syracuse, NY, 13244, United States

1. Introduction

For many years, the development of industrialization has been accompanied by the disposal of various heavy metal pollutants into the environment (Karnitz et al., 2007). These heavy metal ions including chromium (especially hexavalent chromium), lead, mercury, nickel, and copper are toxic and can exert potential threats to ecology and creatures (Owlad et al., 2009; Du et al., 2020). Among them, hexavalent chromium, Cr(VI), is extremely toxic, which can exert threat to the human health via digestion, respiratory tract, skin and mucosa (Wang et al., 2016a; Shen et al., 2019). Generally, Cr(VI) was discharged in the wastewater from different industries like electroplating, chromate leather tanning along with paint-making (Owlad et al., 2009; Wang et al., 2016a; Huang et al., 2017; Testa et al., 2004; Chen et al., 2019). Some technologies including ion exchange (Xing et al., 2007), membrane separation (Liu et al., 2020a), adsorption (Lu et al., 2016), and electrocoagulation (Heidmann and Calmano, 2008) have been used to remove Cr(VI) from wastewater. Reducing toxic Cr(VI) to less toxic Cr(III) was deemed as the preferable approach of Cr(VI) elimination (Huang et al., 2017; Liang et al., 2015), due to that Cr(III) can be facilely precipitated into solid Cr(OH)3. In recent years, there are increasing attentions on photoreduction of Cr(VI) into Cr(III) in wastewater treatment (Zhang et al., 2018a, 2019), considering that photocatalysis is effective, low-cost and free of secondary hazardous chemicals.

As highly porous materials constructed from metal templates and organic linkers, metal-organic frameworks (MOFs) were already used as functional environment materials in various fields like sensing, adsorption, antibacterial and advanced oxidation processes (photocatalysis, photo-Fenton, persulfate activation) (Li et al., 2020a; Yi et al., 2021; Xiong et al., 2020; Huang et al., 2021; Peng et al., 2018; Yi and
limited photo-induced charge separation and light utilization ability.
UiO-66 demonstrated poor photocatalytic performances due to
its low photogenerated charge carrier (Wang et al., 2020). (OH)2-UiO-66-X% could rapidly reduce Cr(VI) to Cr(III) under low power light illumination, in which the Box-Behnken design method was introduced to investigate the influence of co-existing inorganic ions on the reduction efficiency. The possible mechanisms of Cr(VI) reduction were proposed under the conditions with and without the presence TA.

2. Experimental

All chemicals were commercially available from J&K company, which were directly used without further treatment. All characterization and tests were listed in electronic supplementary information (ESI).

2.1. Synthesis of (OH)2-UiO-66-X%

The hydroxyl modified UiO-66 ((OH)2-UiO-66-X%) was synthesized following the previously reported synthesis strategy of UiO-66 with modifications (Yi et al., 2019a). In brief, the solutions of 0.1716 mmol ZrCl4 (40 mg) and 0.1716 mmol organic ligand dissolved respectively in 5.0 mL N,N-dimethylformamide (DMF) were mixed, in which the organic ligand was the matrix of benzene-1,4-dicarboxylic acid and 2,5-dihydroxyterephthalic acid in different proportions. Then, 3.0 mL acetic acid was introduced to the mixed solution. The matrix was transferred into a 25.0 mL Teflon lined autoclave, followed by heating at 120 °C for 24 h. Finally, the (OH)2-UiO-66-X% samples were obtained via centrifugation after cooling to ambient temperature, in which the “X” in (OH)2-UiO-66-X% stands for the content ratio of input 2,5-dihydroxyterephthalic acid.

In this experiment, the proportions of the input 2,5-dihydroxyterephthalic acid in the organic ligand were 5%, 10%, 20%, and 40%. The obtained pale-yellow (OH)2-UiO-66-X% powder samples were labeled as (OH)2-UiO-66-5%, (OH)2-UiO-66-10%, (OH)2-UiO-66-20% and (OH)2-UiO-66-40%, respectively.

2.2. Photocatalytic activity test

The photocatalytic Cr(VI) reduction tests of the (OH)2-UiO-66-X% photocatalysts were carried out using K2Cr2O7 as the model pollutant. 20.0 mg photocatalyst was suspended in 50.0 mL aqueous solution containing 10.0 mg L−1 K2Cr2O7 as Cr(VI) model. The pH values of the solutions were adjusted by H2SO4 or NaOH solutions. The 10 W LED ultraviolet lamp (PCX50B, Beijing Perfect Light Technology Co., Ltd.) was selected as the light source to provide UV light with a 369 nm wavelength (the spectrum of the selected light source was displayed in Fig. S1). After adsorption-desorption equilibrium was accomplished, the system was exposed to UV light under magnetic stirring. Each 1.5 mL solution was extracted at specified time intervals and filtered using 0.45 μm PTFE membrane for further analysis. The residual Cr(VI) concentrations were determined using the diphenyl carbazole (DPC) approach.
on Auto Analyzer 3 Flow Injection Analyzer (Chen et al., 2020).

The apparent quantum efficiency (AQE) experiments were performed upon the irradiation of different lights with selected wavelengths originated from 300 W Xe light (Beijing Aulight Co., Ltd) with the aid of different light filters. The AQEs of photocatalytic Cr(VI) reduction and the incident photons were calculated following Eqs. (1) and (2) (Velegraki et al., 2018; Li et al., 2019a).

$$AQE(Cr) = \frac{3 \times \text{[number of reduced Cr(VI)]}}{\text{number of incident photons}}$$ (1)

$$N_P = \frac{Pt}{hc}$$ (2)

in which, P, t, and λ are the optical power, the irradiation time, and the light wavelength, respectively. h and c represent Planck constant of $6.62607015 \times 10^{-34}$ J s, and lightspeed of 299,792,458 m s$^{-1}$.

3. Results and discussion

3.1. Characterizations

The powder X-ray diffraction (PXRD) patterns of pristine UiO-66, (OH)$_2$-UiO-66, and series (OH)$_2$-UiO-66-X% were depicted in Fig. 1a. The PXRD patterns of series (OH)$_2$-UiO-66-X% were very similar to that of UiO-66 (Yu et al., 2017; Ghorbanpour et al., 2018), with no other peaks observed, indicating that the original structures of (OH)$_2$-UiO-66 were well maintained.

Fourier transform infrared spectra (FTIR) was employed to check the modified hydroxyl groups on the surface of the as-prepared (OH)$_2$-UiO-66 surface. The peak around 1630 cm$^{-1}$ could be attributed to the stretching vibration of hydroxyl groups (Li et al., 2017).

X-ray photoelectron spectra (XPS) was adopted to further prove the amount of hydroxyl groups in (OH)$_2$-UiO-66-20%. The XPS survey scan (Fig. 1b) of UiO-66 and (OH)$_2$-UiO-66-20% showed O 1s, C 1s, Zr 3d characteristic peaks. The O 1s signal (Fig. 2a) mainly demonstrated three peaks at 532.3 eV, 531.7 eV and 530.5 eV. The peaks at 531.7 eV and 530.5 eV were ascribed to COO^- group and Zr-\text{O} group, respectively (Sbi et al., 2020; Lv et al., 2020). The primary peak at 532.3 eV can be assigned to the oxygen atom in the hydroxyl group (Bariki et al., 2020). Based on the peak area, which was proportional to the content of...
The amount of hydroxyl groups on (OH)$_2$-UiO-66-20% were calculated as 31.5%, which was higher than 26.8% of UiO-66. From the above-stated XPS analysis, it can be concluded that 2,5-dihydroxyterephthalic acid was coordinated with zirconium in the UiO-66 structure.

The introduced H$_2$BDC-(OH)$_2$ contents in (OH)$_2$-UiO-66-X% were further determined by both thermogravimetric analyses (TGA) and CHO elemental analyses (EA). The input ratios and the calculated ratios of H$_2$BDC and H$_2$BDC-(OH)$_2$ in the different (OH)$_2$-UiO-66-X% (Table 1) were calculated from Eqs. S1 and S2. It was observed that the actual contents (the calculated ratios) of two ligands into (OH)$_2$-UiO-66-X% matched well with the input ratios. For example, the input ratio and the calculated ratio of H$_2$BDC and H$_2$BDC-(OH)$_2$ in (OH)$_2$-UiO-66-20% were 8.0:2.0 and 8.23:1.77, respectively.

The scanning electron microscope (SEM) images revealed that both pristine UiO-66 and (OH)$_2$-UiO-66-20% displayed smooth octahedral morphology with particle size in the range of 1300–1500 nm (Fig. 3a and b). However, the individual (OH)$_2$-UiO-66 (Fig. S3) displayed irregular-shaped particles with sizes ranging from 80 to 200 nm, which was comparable to that of previous report (Xie et al., 2020).

The UV–Vis diffuse reflectance spectra (UV–Vis DRS) showed the absorption properties of series (OH)$_2$-UiO-66-X% (Fig. 4a). As demonstrated in Fig. 4a, the series (OH)$_2$-UiO-66-X% could be excited by both ultraviolet light and visible light. Comparing with the pristine UiO-66, the red shift of (OH)$_2$-UiO-66-X% can be ascribed to that the introduced hydroxyl group could improve the light absorption for longer wavelength (Xie et al., 2020). The color of UiO-66, (OH)$_2$-UiO-66-20% and (OH)$_2$-UiO-66 powder were white and pale-yellow, respectively (inset pictures in Fig. 4a).

The Mott–Schottky plots of the (OH)$_2$-UiO-66-20% were determined at different frequencies to calculate the flat band potential (Fig. 4b). The positive relationship and the obtained C2 to the potentials implied that the corresponding photocatalysts belonged to n-type semiconductors (Shen et al., 2015). The conduction band (LUMO) of the (OH)$_2$-UiO-66-20% was determined to be ca. 0.45 eV versus the Ag/AgCl electrode at pH = 7.0 via $E_{\text{LUMO}} = E_{\text{HOMO}} - E_g$ (Zou et al., 2016). Since the flat band potential is more positive 0.1 eV than the conduction band potential for n-typed semiconductor (Zhao et al., 2020), the E_{LUMO} of (OH)$_2$-UiO-66-20% was calculated as −0.35 eV vs. NHE. Considering the pH effect, the following Eq. (3) (Liu et al., 2020b) was used to correct the E_{LUMO} and E_{HOMO} of (OH)$_2$-UiO-66-20%.

$$E = E_0 - 0.05915 \times \text{pH}$$

The E_{LUMO} and E_{HOMO} values of (OH)$_2$-UiO-66-20% at pH = 7.0 were estimated to be −0.76 and 3.22 eV vs. NHE.

3.2. Photocatalytic performances

3.2.1. Photocatalytic Cr(VI) reduction performances of (OH)$_2$-UiO-66-X%

The Cr(VI) reduction experiments were performed under the low power LED UV light irradiation. The adsorption capacities of (OH)$_2$-UiO-66-X% increased with the increasing hydroxyl group content due to the
enough electrostatic interaction sites for adsorbing Cr(VI) ions (Fig. 5a) (Li et al., 2017; Nair et al., 2014), which further resulted in the better photocatalytic Cr(VI) reductions performances of all (OH)$_2$-UiO-66-X% than that of the pristine UiO-66. In detail, (OH)$_2$-UiO-66-20% showed the highest photocatalytic Cr(VI) reduction efficiency (98.97% at 30 min, 100% within 40 min), and followed by (OH)$_2$-UiO-66-5% (72.40% at 30 min, 94.57% within 90 min), (OH)$_2$-UiO-66-10% (85.20% at 30 min, 100% within 70 min). In addition, the (OH)$_2$-UiO-66-20% photocatalyst exhibited superior photocatalytic Cr(VI) reduction activity to many counterparts photocatalysts (Table 2). The Cr(VI) removal efficiency of (OH)$_2$-UiO-66-40% reached 100% in 30 min, which was comparable to that of (OH)$_2$-UiO-66-20%. However, the high removal efficiency of (OH)$_2$-UiO-66-40% can be ascribed to both adsorption (45.52%) and photocatalysis (54.48%) procedures, in which excessive adsorption of Cr(VI) onto photocatalyst might result in the mask of active sites and the poor reusability (Li et al., 2020a). Besides, the pseudo-first-order kinetic (k) model (Eq. (4)) was adopted to quantitatively describe the reaction kinetics. The photocatalysis reaction rate evidenced by reaction rate constant k (Fig. 5b) followed the order of (OH)$_2$-UiO-66-20% > (OH)$_2$-UiO-66-40% > (OH)$_2$-UiO-66-10% > (OH)$_2$-UiO-66 > (OH)$_2$-UiO-66-5% > mixture > no light > UiO-66. From these results, the net photocatalysis efficiency of (OH)$_2$-UiO-66-40% was lower than that of (OH)$_2$-UiO-66-20%. Therefore, (OH)$_2$-UiO-66-20% was selected as optimal photocatalyst to complete the further experiments and determinations.

\[
\ln(C/C_0) = -kt
\]

As shown in Fig. S4 and Table S1, the results of the Brunauer-Emmett-Teller (BET) specific surface area indicated that the partial introduction of 2,5-dihydroxyterephthalic acid did not lead to the big

\[
\text{Table 2}
\]

<table>
<thead>
<tr>
<th>Photocatalyst/amount (mg)</th>
<th>(c_0) (mg L$^{-1}$)</th>
<th>Light source</th>
<th>(T) (min)</th>
<th>1st cycle efficiency (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UiO-66-NH$_2$ membrane</td>
<td>5.0</td>
<td>300 W Xe lamp</td>
<td>120</td>
<td>98</td>
<td>Du et al. (2019)</td>
</tr>
<tr>
<td>3.0-HUCN/100</td>
<td>20.0</td>
<td>300 W Xe lamp</td>
<td>60</td>
<td>100</td>
<td>Wang et al. (2020)</td>
</tr>
<tr>
<td>UiO-66-NH$_2$/20</td>
<td>10.0</td>
<td>300 W Xe lamp</td>
<td>80</td>
<td>97</td>
<td>Shen et al. (2015)</td>
</tr>
<tr>
<td>g-C$_3$N$_4$/MIL-100(Fe)/100</td>
<td>10.0</td>
<td>300 W Xe lamp</td>
<td>80</td>
<td>97</td>
<td>Yi et al. (2019b)</td>
</tr>
<tr>
<td>WO$_3$/MIL-100 (Fe)/20</td>
<td>5.0</td>
<td>25 W LED lamp</td>
<td>60</td>
<td>100</td>
<td>Wang et al. (2021b)</td>
</tr>
<tr>
<td>Au$_2$CO$_3$/UiO-66-NH$_2$/10</td>
<td>10.0</td>
<td>5 W LED lamp</td>
<td>50</td>
<td>100</td>
<td>Zhou et al. (2019)</td>
</tr>
<tr>
<td>5-TiO$_2$/UiO-66-NH$_2$/10</td>
<td>5.0</td>
<td>300 W LED lamp</td>
<td>75</td>
<td>100</td>
<td>Li et al. (2020a)</td>
</tr>
<tr>
<td>(OH)$_2$-UiO-66-20%/20</td>
<td>10.0</td>
<td>10 W LED lamp</td>
<td>40</td>
<td>100</td>
<td>This work</td>
</tr>
</tbody>
</table>

\[
\text{Fig. 5. The photocatalytic Cr(VI) reduction (a) efficiencies and (b) rates (k values) over the photocatalysts under LED UV light irradiation. (c) AQEs of Cr(VI) reduction upon the irradiation of different lights.}
\]
surface areas decrease of (OH)$_2$-UiO-66-X%. However, as the proportion of 2,5-dihydroxyterephthalic acid increased to 40%, the specific surface area decreased from 1079.2 m2 g$^{-1}$ to 922.46 m2 g$^{-1}$. The larger specific surface areas were believed to expose more active sites, which can improve the photocatalysis activities via improving the charge transfer and effective light utilization (Chen et al., 2007).

The AQE determination was selected as a critical index to evaluate photocatalysis abilities under different light sources (Li et al., 2019b). As illustrated in Fig. 5c, the AQEs of (OH)$_2$-UiO-66-20% achieved 3.13%, 3.37%, 0.24% and 0.17% upon the irradiation of different lights with wavelengths at 365 nm, 380 nm, 420 nm and 520 nm, respectively. The AQEs at different wavelengths followed the curve trend of the used UV–vis DRS spectra, confirming that the Cr(VI) reduction over (OH)$_2$-UiO-66-20% was subject to the photocatalysis procedure (Zhou et al., 2020; Wang et al., 2021a).

3.2.2. Effect of initial pH toward Cr(VI) reduction

It was thought that pH might exert significant influence to the Cr(VI) reduction (Wang et al., 2016a), since it can change both the Zeta potentials of the selected photocatalysts and the existing forms of Cr(VI) (Yi et al., 2019b). In this study, the Cr(VI) reduction experiments were performed at pH = 2.0, 4.0, 6.0, 8.0, 10.0, respectively. It had been reported that the pH values of solutions could influence the surface potential of the photocatalyst (Grover et al., 2013). As shown in Fig. 5S, the zeta potentials of (OH)$_2$-UiO-66-20% were positive at pH = 2.0, 4.0 and 6.0, which facilitated the Cr(VI) adsorption under acid conditions due to the electrostatic attraction. In contrast, its zeta potentials were negative at pH = 8.0 and 10.0, which restrained the Cr(VI) adsorption because of strong electrostatic repulsion. As illustrated in Fig. 6a and b, it was also observed that pH exerted heavily influences toward both the Cr(VI) reduction efficiencies and rates (k values), in which higher pH led to decline efficiency and reaction rate. The processes of photocatalytic Cr(VI) reduction over (OH)$_2$-UiO-66-X% followed by Eqs. (5) and (6) under acidic solution (Du et al., 2019; Wang et al., 2017). The abundant H$^+$ ions in solution were conducive to the Cr(VI) transformation to Cr(III) (Wang et al., 2016a). In contrast, the Cr(VI) existence form was CrO$_4^{2-}$ under higher pH environment (Zhang et al., 2017), in which the Cr(VI) reduction reaction was achieved following Eq. (7) (Yi et al., 2019b). As well, the formed solid Cr(OH)$_3$ under higher pH conditions might mask the active sites of (OH)$_2$-UiO-66-20% photocatalyst, resulting in the decreased Cr(VI) reduction performance (Wang et al., 2015, 2016a).

\begin{align}
(\text{OH})_2 - \text{ UiO } - 66 - 20\% + h\nu &\rightarrow (\text{OH})_2 - \text{ UiO } - 66 - 20\% (h^+ + e^-) \\
\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6e^- &\rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \\
\text{CrO}_4^{2-} + 4\text{H}_2\text{O} + 3e^- &\rightarrow \text{Cr(OH)}_3 + 5\text{OH}^-
\end{align}

Fig. 7. The Cr(VI) reduction efficiencies and the corresponding reduction rates (k values) (inset plots) over (OH)$_2$-UiO-66-20% (a) in different wastewater samples simulated from both deionized water and tap water, as well as (b) under sunlight irradiation.
3.2.3. Photocatalytic Cr(VI) reduction performance in the simulated tannery wastewater

Different simulated wastewater containing Cr(VI) formulated by tap water and deionized water (the quality parameters of corresponding water sample was shown in Table S2) were tested for (OH)$_2$-UiO-66-20% under UV light irradiation. As shown in Fig. 7a, the Cr(VI) reduction performances over (OH)$_2$-UiO-66-20% decreased slightly in simulated Cr(VI) wastewater from tap water, in which 100% Cr(VI) can be accomplished within 60.0 min.

Considering that (OH)$_2$-UiO-66-20% could be excited by the visible light (Fig. 4a), in this study, the experiments were performed under real solar at the Daxing campus of BUCEA (39°44′N, 116°17′E) on February 9th (15 °C), March 16th (14 °C) and March 21st (12 °C) in 2021. The optical powers were measured as 21 mW, 65 mW and 55 mW the spectrum of real sunlight were shown in Fig. S6. As illustrated in Fig. 7b, the 100% Cr(VI) reduction can be accomplished within 70 min, 40 min and 50 min on February 9th, March 16th and March 21st, respectively. Therefore, the real sunlight can induce the photocatalysis reaction by (OH)$_2$-UiO-66-20%, in which the optical power was thought as one of the primary factors for effective Cr(VI) reduction via photocatalysis.

Fig. 8. Response surface diagram of the influences from different co-existing matters in simulation tanning wastewater toward Cr(VI) reduction efficiencies over (OH)$_2$-UiO-66-20%.

Fig. 9. The influences of (a) different small molecule acids and (b) the tartaric acid concentrations on photocatalytic Cr(VI) reduction performances over (OH)$_2$-UiO-66-20% photocatalyst.
The effect of co-existing inorganic ions in tanning wastewater was also studied by the Box-Behnken methodology (Li et al., 2020a; Zhao et al., 2020). It was believed that the photo-generated electrons or holes are free of the influence of the inorganic cations like K\(^+\), Ca\(^{2+}\), Na\(^+\), Mg\(^{2+}\) because of the high stability of these cations (Yi et al., 2019a; Wang et al., 2012). Abundant SO\(_4^{2-}\) (175.1–1000 mg L\(^{-1}\)) and Cl\(^-\) (32.2–2000 mg L\(^{-1}\)) existed in tanning wastewater might exerted great influence to the photocatalysis activity. Therefore, the effect of the co-existing SO\(_4^{2-}\) (A), Cl\(^-\) (B) and DOM (C, tartaric acid as DOM model) was tested to explore the photocatalytic Cr(VI) reduction efficiencies under LED UV light irradiation, in which the ion concentrations of natural lake water was lowest and that of tanning wastewater was highest. The 17 runs experiments results (Table S3) indicated that the quadratic polynomial model (Eq. (8)) could be used to describe the relationship between the photocatalytic efficiency response and variables.

\[
\text{Efficiency}\% = 93.36 + 0.82 A - 2.69 B + 1.20 C - 0.13 AB - 1.32 AC + 0.30 BC + 0.45 A^2 - 1.63 B^2 - 1.17 C^2
\]
(8)

The calculated F values were 41.33, 8.23, 3.80 for SO\(_4^{2-}\), DOM and Cl\(^-\), respectively, demonstrating that SO\(_4^{2-}\) and DOM rather than Cl\(^-\) can exert obvious impact on Cr(VI) reduction. As depicted in the 3D surface plots (Fig. 8), the selected inorganic anions especially SO\(_4^{2-}\) could inhibit the Cr(VI) reduction (Fig. 8d), in which (OH)\(_2\)-UiO-66-20% could adsorb SO\(_4^{2-}\) via the electronic interactions (Yi et al., 2019a). As to the simulated wastewater containing SO\(_4^{2-}\) (1000 mg L\(^{-1}\)) and Cl\(^-\) (2000 mg L\(^{-1}\)), the influence of TA concentration toward Cr(VI) reduction displayed saddle-shaped curve (Fig. 8b and c), in which the optimal concentration of tartaric acid was 0.2 mmol L\(^{-1}\).

3.2.4. Influence of small molecular organic acids

The results of Box-Behnken experiment revealed that the Cr(VI) reduction activity over (OH)\(_2\)-UiO-66-20% was further boosted when tartaric acid was introduced. Three small molecular organic acids (SOAs) including citric acid, oxalic acid and tartaric acid were introduced into the aqueous solution to explore their influences on the photocatalytic Cr(VI) reduction performance of (OH)\(_2\)-UiO-66-20% (Fig. 9a). Generally, SOAs were adopted as hole scavengers in the photocatalytic reaction, which consumed the photo-induced holes (h\(^+\)) to accelerate the Cr(VI) reduction via enhancing the separation of photo-induced electron-hole pairs (Yi et al., 2019a; Wang et al., 2021b). However, among the three SOAs in our study, only tartaric acid could accelerate the Cr(VI) reduction in the photocatalysis reaction (Fig. 9a), which could be attributed to the different structures of SOAs (Wang et al., 2008, 2016a). The Cr(VI) reduction efficiency declined when -OH had been trapped by oxalic acid (Liu et al., 2021), which could shift the equilibrium toward Cr(VI) as indicated in Eqs (9)–(11) (Yi et al., 2019a). The consumed -OH would also hinder the separation of electrons and holes to further decrease the Cr(VI) reduction efficiency. However, the increased photocatalytic Cr(VI) reduction rate under UV light irradiation was originated from the electron transfer between tartaric acid and (OH)\(_2\)-UiO-66-20%. Tartaric acid could coordinate with photocatalyst (OH)\(_2\)-UiO-66-20% to form charge-transfer-complex (CTC), which leads to the migration of the photo-produced electrons from tartaric acid to
the LUMO of the (OH)$_2$-UiO-66-20% (Wang et al., 2010). During this process, COO$^-$ radicals were produced from tartaric acid to participate and enhance the Cr(VI) reduction (Wang et al., 2010; Zhao et al., 2021). To explore the follow-up work, the photocatalytic Cr(VI) reduction performances of all photocatalysts were improved significantly after 0.1 mmol L$^{-1}$ TA was added (Fig. S7). It was worth mentioning that the TA could only reduce partial Cr(VI) under UV light irradiation. The rate diagram indicated that (OH)$_2$-UiO-66-20% was the most effective photocatalyst with highest reaction rates (k values) of 0.2234 min$^{-1}$ (Fig. S8).

The concentration of TA could also affect the reduction process due to the release of free radicals (Liu et al., 2021). As depicted in Fig. 9b, the Cr(VI) reduction efficiencies increased as the tartaric acid concentrations increased from 0.05 to 0.4 mmol L$^{-1}$. However, the reduction efficiencies did not change significantly when the TA concentration was increased to 0.8 mmol L$^{-1}$, indicating that excessive tartaric acid would neither consume the photo-induced free radicals nor produce more COO$^-$ radicals. The reaction involved COO$^-$ radicals might be expressed by Eq. (12) (Liu et al., 2021).

3.2.5. Cyclicity and stability of (OH)$_2$-UiO-66-20%

To explore the practical application of (OH)$_2$-UiO-66-20% photocatalyst in the treatment of industrial wastewater with optimal concentration of tartaric acid, five runs Cr(VI) reduction operations were conducted with the presence of tartaric acid (0.2 mmol L$^{-1}$). As depicted in Fig. 10a, nearly 100% Cr(VI) reduction efficiencies can be accomplished over (OH)$_2$-UiO-66-20% photocatalyst after 5th run operations, implying that (OH)$_2$-UiO-66-20% photocatalyst was stable and could be adopted for long-term operation. Meanwhile, the stability of (OH)$_2$-UiO-66-20% was further confirmed by PXRD (Fig. 10b), SEM (Fig. 10d), FTIR (Fig. S9) and XPS (Fig. S10) analysis. Noticeably, the peaks at 580.2 eV and 586.8 eV could be assigned to Cr(VI), and the peak at 577.2 eV could be ascribed to the newly formed Cr(III) (Zhao et al., 2014; Libenson and Shakhmin, 2000), implying that both minor unreacted Cr(VI) and formed Cr(III) were adsorbed onto (OH)$_2$-UiO-66-20%.

3.3. The photocatalytic Cr(VI) reduction mechanism

Both photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopy (EIS) were used to investigate the Cr(VI) reduction mechanism over (OH)$_2$-UiO-66-3% photocatalyst with or without the presence tartaric acid. The higher photoluminescence intensity indicated the higher recombination efficiency of photoinduced electrons and holes (Nie et al., 2018; Li et al., 2020b). As shown in Fig. 11a, it was clearly observed that the emission peak at 369 nm decreased with the increasing content of hydroxyl groups into (OH)$_2$-UiO-66-X%. It was deemed that the introduced hydroxyl groups in (OH)$_2$-UiO-66-X% could accomplish effective separation of the
electrons - hole pairs (Ding et al., 2020). Although the (OH)$_2$-UiO-66-40% and (OH)$_2$-UiO-66 exhibited the more rapid charge carrier separation and migration rate, the decrease of their specific surface areas (Table S1) might lead to less exposure of active sites. The diameter of arc radius (Fig. 11b) of EIS determination results followed the order of (OH)$_2$-UiO-66-10% > (OH)$_2$-UiO-66-40% > UiO-66 > (OH)$_2$-UiO-66-5% > (OH)$_2$-UiO-66-20%, confirming that (OH)$_2$-UiO-66-20% displayed quicker charge carrier separation and interfacial charge transfer than other (OH)$_2$-UiO-66-X% photocatalysts.

To further identify the primary active species during the Cr(VI) reduction process and the corresponding reaction mechanism with or without tartaric acid, the ESR measurements were conducted. It was reported that -O$_2$ radicals can participate the Cr(VI) reduction (Eqs. (13) and (14)) (Li et al., 2019a; Zhang et al., 2018b; Wang et al., 2016b).

\[
\text{O}_2^- + \text{Cr(VI)} \rightarrow \text{Cr(V)} + \text{O}_2
\]

\[
\text{Cr(V)} + 2e^- \rightarrow \text{Cr(III)}
\]

In our work, the DMPO-\text{O}_2 signals (Fig. 11c) were observed upon the irradiation of UV light for 5 min and 10 min, affirming that -O$_2$ radicals were produced in the photocatalysis process in the absence of tartaric acid. Based on the obtained results, the Cr(VI) reduction over (OH)$_2$-UiO-66-20% was proposed as illustrated in Fig. 12a. Both the photo-induced electrons by (OH)$_2$-UiO-66-20% can not only directly reduce Cr(VI) to Cr(III) but also react with dissolved oxygen (DO) to produce -O$_2$ radicals for Cr(VI) reduction. The photo-induced h$^+$ can react with water molecules to form -OH radicals, which might oxide negligible Cr(III) to Cr(VI) (Yi et al., 2019a).

As shown in Fig. 12b, in addition to the participation of photo-induced electrons and -O$_2$ radicals, the added tartaric acid (TA) can enhance Cr(VI) reduction via three channels: (i) TA acts as holes capturer to consume the holes to accelerate the charge carrier separation (Wang et al., 2021b); (ii) TA reacted with (OH)$_2$-UiO-66-20% to form charge-transfer-complex (CTC), which leaded to photo-produced electrons transfer from the HOMO of tartaric acid to the LUMO of the (OH)$_2$-UiO-66-20% (Wang et al., 2010); (iii) COO$^-$ radicals can be yielded from tartaric acid to enhance the Cr(VI) reduction. The ·OOC-DMPO$^-$ signals (Fig. 11d) in the presence of TA were detected in ESR determination under UV light irradiation for 5 min and 10 min, confirming that COO$^-$ radicals could be yielded in the photocatalysis process using (OH)$_2$-UiO-66-20%.

4. Conclusion

Hydroxyl-modified UiO-66 was fabricated via the hydrothermal approach, in which the hydroxyl groups acted as the intermolecular hole scavenger to enhance the rapid separation of the photogenerated charge carrier. Under low-power LED UV light irradiation, (OH)$_2$-UiO-66-20% exhibited higher efficiency than UiO-66 and (OH)$_2$-UiO-66 for photocatalytic Cr(VI) reduction. The influences of SOAs, pH and co-existing matters on Cr(VI) reduction performances of (OH)$_2$-UiO-66-20% were explored. The Box-Behnken design approach was introduced to further declare that the inorganic foreign anions and dissolved organic matters (SOAs) could lead to significant impact on Cr(VI) reduction performance, which was promising for the application of Cr(VI) removal in tanning wastewater. The introduction of hydroxyl groups can extend the light absorption region longer wavelength even to shift to visible light, which provided possibility to use real sunlight to drive the Cr(VI) reduction. The recycling experiment showed that (OH)$_2$-UiO-66-20% had great reusability and stability for potential applications. This work provided a brand-new possibility to design and produce novel photocatalysis systems by surface modified MOF-based photocatalysts as well as the introduction of effective SOAs for enhanced Cr(VI) elimination for practical applications.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by National Natural Science Foundation of China (51878023), Beijing Natural Science Foundation (8202016), Great Wall Scholars Training Program Project of Beijing Municipality Universities (CIT&TCD20180323), Beijing Talent Project (2020A27) and The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (X20147/X20141/X20135/X20146).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envres.2021.111596.
Credit author statement

References

