Enhanced As(III) transformation and removal with biochar/SnS2/phosphotungstic acid composites: Synergic effect of overcoming the electronic inertness of biochar and W2O3(AsO4)2 (As(V)-POMs) coprecipitation

Ke-Hui Xue¹, Jing Wang¹, Ying Yan¹, Yi Peng¹, Wen-Lei Wang²*, Hong-Bo Xiao¹, Chong-Chen Wang²*,

¹ College of Science, Central South University of Forestry and Technology, Changsha 410004, China
² Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

ABSTRACT

The activation of carbon atoms in biochar is an important approach for realizing the reuse of discarded woody biomass resources. In this work, a strategy for the construction of carbon-based catalysts was proposed with Magnoliaceae root biomass as a carbon source, doped by SnS2 and further decorated with heteropoly acid. The introduction of SnS2 can activate the carbon atom and destroy the electronic inertness of the disordered biochar with 002 planes. In addition, the synergy between the Keggin unit of phosphotungstic acid and biochar/SnS2 can suppress recombination of e⁻–h⁺ carriers. The adsorption and photocatalysis experiments results showed that the efficiency of removing As(III) by biochar/SnS2/phosphotungstic acid (biochar/SnS2/PTA) systems was 1.5 times that of biochar/SnS2 systems, and the concentration of total arsenic in the biochar/SnS2/PTA composite system gradually decreased during the photocatalysis process. The formation of As-POMs can simultaneously realize As(III) photooxidation and As(V) coprecipitation. The phase transfer of arsenic by As-POMs could significantly increase the As adsorption capacity. Specifically, the composites achieved the conversion of S atoms at the interface of biochar into SO₄²⁻ radicals to enhance the As(III) photooxidation performance.

1. Introduction

The activation of carbon atoms in biochar, which can participate in biological and nonbiological redox reactions, is still a challenge in the field of reusing discarded woody biomass resources (Yi et al., 2019; Ye et al., 2020; Moon et al., 2017). In particular, biochar with phenazine and quinone groups is considered to be an effective and economical field of reusing discarded woody biomass resources (Yi et al., 2019; Ye et al., 2020; Moon et al., 2017). As-POMs coprecipitation on the surface of biochar is an important strategy for building electronic defects to modulate the carbon networks and improve their photocatalytic performance (Qu et al., 2020; Liu et al., 2010). The N,S-doped porous carbon synthesized using coffee grounds as a carbon source has exhibited an excellent photocatalytic oxidative degradation performance for tetracycline hydrochloride (Hu et al., 2020). It was proven that heteroatom doping can break the electronic inertness of the carbon framework and effectively produce point defects, which play a key role in the process of photocatalytic oxidation.

Oxy-acid ion pollutants like As(III) seriously restricts the sustainable development of human society. With increasing soil environmental pollution, arsenic (As) have been listed as key global targets for...
2. Experimental section

2.1. Synthesis of the photocatalyst

2.1.1. Synthesis of SnS$_2$ doped porous biochar

A suction method was used to make the load enter the pipe wall evenly. First, the biochar, which used Magnoliaceae waste wood from the low-value root biomass of Magnolia Wulin as a carbon source, was spread on the Buchner funnel, and a 0.25 mmol SnCl$_2$ solution was used several times for rapid filtration. Then, the collected solution slowly passed through the biochar without suction filtration, and the compound was shifted to a 50 mL polytetrafluoroethylene autoclave, which was then kept at 160 °C for 12 h. After the reaction, the autoclave was cooled to an indoor temperature to obtain the product, which was centrifuged at 8000 rpm for 2 min, washed with ethanol and H$_2$O several times, and dried in a vacuum environment at 50 °C for ultraper use. Then, the obtained solid intermediate product was subjected to a similar procedure, with a liquid phase vulcanization reaction of 0.50 mmol TAA (thioacetamide) as the sulfur source. The obtained composite material was named biochar/SnS$_2$.

2.1.2. Synthesis of SnS$_2$ doped porous biochar decorated with PTA

In a typical manner, a certain amount of phosphotungstic acid (H$_3$PW$_12$O$_{40}$) that was purchased from Sinopharm Chemical Reagent (Shanghai, China) and 100 mg biochar were dispersed in ethanol (10 mL) and kept for 5 min under ultrasonic conditions to make the solution evenly mixed. Then, the mixed system was transferred to a 25 mL Shrek tube. After stirring and heating the obtained compound at 80 °C for 1 h, the compound was subjected to a hydrothermal process at 150 °C for 12 h with a heating rate of 1 °C/min. After the reaction, the Shrek tube was cooled to a room temperature to obtain the solid product, which was collected via centrifugation, washed with ethanol, and dried under vacuum at 50 °C. The as-synthesized products were named biochar/SnS$_2$/PTA-x, where x is the dose of H$_3$PW$_12$O$_{40}$ in terms of molar ratio.

2.2. Characterisations

The microstructure and chemical composition of the as-obtained materials were observed and characterized through scanning electron microscopy (SEM) (JEOL JXA-840A) and transmission electron microscopy (TEM) (JEM-21000 (HR)). The powder X-ray diffraction (XRD) patterns were recorded using a Bruker D8 Advance equipped with Cu-Kα ($\lambda = 0.15406$ nm) for 2θ between 5° and 90° to test the phase and crystal structure of the samples. X-ray photoelectron spectroscopy (XPS) (Thermo Kalpha) was implemented to analyze the chemical environment and chemical state of the element of the biochar/SnS$_2$/PTA-x materials. UV–visible light diffuse reflectance spectra (UV–vis DRS) were obtained on a TU-1901 UV-Vis spectrophotometer to estimate the light absorption range of the as-prepared samples in the range of 200–800 nm and with BaSO$_4$ as the reference. The photoluminescence (PL) (Hitachi F-7000) spectra were used to explain the recombination rate of the photogenerated carriers for biochar/SnS$_2$/PTA composites with excitation wavelength of 422 nm. An electron paramagnetic resonance (EPR) analyses (Bruker A300) with a spin trapping of 2,2,6,6-tetramethylpiperidinoxy (TEMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were performed to capture the holes or free radicals in the photooxidation process of As(III).

2.3. Adsorption and photocatalysis experiments

The photooxidation of As(III) experiments were performed in a 40 mL quartz tube. In a typical test, 30 mg photocatalysts were dispersed in 35 mL As(III) solution ($C_0 = 10$ mg/L) for 30 min to achieve adsorption-desorption equilibrium in the dark. A pre-experiment under dark conditions was performed before the photocatalysis experiments in order to determine whether the system reached adsorption-desorption equilibrium within 30 min. A 500 W xenon lamp with a 420 nm UV cutting filter was used as a visible light source (Perfect Light Co., China). And Xe lamp does not contain ozone. After light treatment, the NaAsO$_2$ solution was collected through the injector with a 0.45 μm disposable filter into a 5 mL centrifuge tube at regular intervals. The solutions were centrifuged at 12,000 rpm for 3 min to remove the photocatalysts powder for further determining the residual As(III) concentrations. Additionally, the As(III) concentrations were acquired through a CHI600E electrochemical workstation analyzer (Shanghai Chenhua Instrument Co., Ltd., China) with a normal three-electrode analysis system. The As(V) concentrations were detected via liquid chromatography-atom fluorescence spectrometry (LC-AFS) (AFS-8220). Moreover, the influences of pH values as well as co-existing ions like Cl$^-$, NO$_2^-$, CO$_3^{2-}$, SO$_4^{2-}$ and PO$_4^{3-}$ ions on the distribution of arsenic species and the photocatalytic As(III) oxidation were investigated. The pH value was regulated by NaOH or HCl solution with suitable concentrations. The five ions mentioned above came from...
the NaCl, NaNO₃, Na₂CO₃, Na₂SO₄ and NaH₂PO₄ salts, which were purchased from Sigma-Aldrich.

3. Results and discussion

3.1. The microstructure and crystal structure analysis

Understanding the surface chemistry of the as-prepared biochar/SnS₂/PTA composite material will help us investigate the factors affecting the removal of arsenic. The SEM images are shown in Fig. 1a–f. In Fig. 1a, pure biochar exhibited a large specific surface area and a smooth surface. SnS₂ was easy to reunite into a flower-like morphology (Fig. 1b), and PTA tended to aggregate into a block-like structure (Fig. 1c). As shown in Fig. 1d–f, the as-obtained biochar/SnS₂/PTA composite material by hydrothermal method can effectively prevent the agglomeration of SnS₂ and PTA. As expected, the SnS₂ nanosheets grew uniformly on the surface of the biochar, and PTA were loaded on the SnS₂ nanosheets. The results illustrated that biochar/SnS₂/PTA were successfully synthesized using biochar as a direct template. And PTA clusters adhered to the outer surface of biochar/SnS₂/PTA, which indicated the formation of interface interactions between the ternary composites. This anisotropic structure can increase the exposure of the active sites to accelerate the photocatalysis performance. Meanwhile, energy dispersive X-ray spectroscopy (EDX) also illustrated the coexistence of C, Sn, S, P, W and O elements (Fig. 1g). The crystallographic structures of the biochar/SnS₂/PTA composite were measured via XRD (Fig. 1h). From Fig. 1h, biochar/SnS₂/PTA samples showed only a sharp diffraction peak at approximately 26.5°, which was ascribed to the (002) plane of the graphitic structure (Zhang et al., 2020). This phenomenon indicated that the disordered biochar was successfully converted into single-phase graphite carbon. And hydrothermal process caused serious damage to the (102) crystal plane of SnS₂ located at 41.9°. Furthermore, the characteristic peaks of the biochar/SnS₂/PTA at 2θ values of 14.8°, 28.5°, 32.0° and 49.9° were attributed to the (001), (100), (011) and (110) crystal faces of SnS₂ (JCPDS No. 83-1705), respectively, implying that the SnS₂ nanosheets were inserted into the interlayer space and then combined with the graphite plane during the pyrolysis of biochar (Liu et al., 2019a). Two new peaks appearing at 36.2° and 39.2° corresponded to the (102) and (103) planes of WS₂ (JCPDS No. 08-0237), respectively, revealing that the PTA were successfully decorated on biochar/SnS₂ via W–S chemical bonds (Lu et al., 2012). By comparing the (002) crystal plane of the XRD pattern (Fig. 1i), it is noteworthy that the increase in the loading of PTA during the preparation process may promote an improvement in the graphitization degree of biochar, which

Fig. 1. SEM images of (a) biochar, (b) SnS₂, (c) PTA and (d–f) biochar/SnS₂/PTA hybrids, (g) EDX spectra analysis and (h–i) XRD patterns for biochar/SnS₂/PTA materials.
was not conducive to disturbing the electronic structure and spin of the sp2 hybrid carbon atom or the activation of delocalized electrons of carbon atoms.

Fig. 2 shows the TEM images of biochar/SnS$_2$/PTA to evaluate the microstructure and element distribution. From Fig. 2a–c, the microscopic morphology shown by the TEM of biochar, SnS$_2$ and PTA was consistent with the SEM image (Fig. 1a–c). Many micropores were observed in the simple biochar. As displayed in Fig. 2d–e, the PTA particles were decorated on the interface of biochar/SnS$_2$ to design biochar/SnS$_2$/PTA hybrids without any destruction of the biochar or SnS$_2$ nanosheet structures. The size of the PTA particles is approximately 20 nm. The high-resolution TEM (HRTEM) characterizations of the biochar/SnS$_2$/PTA composites are displayed in Fig. 2f. The interplanar lattice fringes with d-spacings SnS$_2$ being 0.588 nm correlated to the (001) crystal facet, which corresponded well with the XRD analysis (Fig. 1h) (Liu et al., 2019a). The lattice interface between the PTA and biochar/SnS$_2$ was integrated. From the SEM image as illustrated in Fig. 1d, the method of suction filtration can unblock the tube wall of the biochar to favor the Sn and S load in the biochar even onto the tube wall during the process of sample preparation. Additionally, phosphotungstic

![Fig. 2. TEM images of (a) biochar, (b) SnS$_2$, (c) PTA, (d–e) biochar/SnS$_2$/PTA and (f) HR-TEM images of biochar/SnS$_2$/PTA, (g–m) the corresponding EDX mapping of the C, O, P, Sn, S, W elements.](image-url)
acid (PTA) grew evenly on the surface of biochar/SnS₂. TEM–EDX elemental distribution mapping (Fig. 2g–m) for biochar/SnS₂/PTA confirmed that C, Sn, S, P, W and O were evenly distributed throughout the scanning section. Delightedly, the TEM images combined with SEM and XRD data confirmed the successful construction of the composite material, in which its structure was as expected with a clear interface.

3.2. Optical performance characteristics

Fig. 3a shows the UV–Vis DRS of the as-obtained samples to characterize the light absorption. Both the SnS₂ and biochar/SnS₂ composite materials have demonstrated good semiconductor properties in previous studies (Xue et al., 2020). The excellent light response ability is beneficial to improving the utilization of visible light and enhancing the photooxidation or photoreduction ability of oxy-acid ions. As illustrated in Fig. 3a, the biochar/SnS₂/PTA-0.1 displayed an absorption edge of approximately 600 nm, and its band gap value was computed to be 1.38 eV. Meanwhile, biochar/SnS₂/PTA-0.1 demonstrated an extended absorption in the visible spectral range and a redshift of the absorption edge compared with SnS₂ and PTA, whose absorption edges were at about 650 nm and 400 nm, respectively. And the band gaps of SnS₂ and PTA were calculated to be 1.89 eV and 3.00 eV, respectively (Fig. 3b). The introduction of heteroatom S and transition metal Sn had a regulatory effect on the optical absorption properties of the biochar network with the 002 planes. The electronic state of S affected the edge of the conduction band, and the band gap of the composite material was decreased (Zhu et al., 2019). However, the optical response intensity of the biochar/SnS₂/PTA composites in the visible light range declined as the quantity of PTA increased. This result was ascribed to the coverage of phosphotungstic acid reducing the light response area of biochar/SnS₂. To further characterize the optical properties of the composite material, the as-prepared material was subjected to PL detection (Fig. 3c) to test the recombination rate of the photogenerated electron hole. Obviously, the PL intensity of biochar/SnS₂/PTA hybrid materials was significantly depressed contrast with biochar, SnS₂ and PTA, which illustrated that the construction of ternary composite materials was beneficial to inhibit the recombination of photo-induced carriers and accelerate the separation of electron-hole pairs. And the biochar/SnS₂/PTA-0.1 material exhibited a lower PL peak, which was attributed to the Keggin unit of the PTA being used as an electron trap to enhance the electron trapping ability. Meanwhile, composites based on –C≡Sn–S bonds can activate the π–π* network of biochar in order to improve the utilization of captured electrons. As the mass ratio of PTA to biochar/SnS₂ further increased, it was not conducive to the separation of photogenerated electrons and hole pairs, which due to the fact that the Keggin structure of PTA was favorable to trapping too many electrons (Li et al., 2014). Significantly, PL characterization combined with a DRS spectrum analysis demonstrated that biochar/SnS₂/PTA-0.1 composites can prolong the service life of h⁺ and activate the hydroxyl groups to OH groups on the surface of biochar.

3.3. Photocatalytic property evaluation

3.3.1. Photocatalytic conversions of As(III) and co-precipitation of As(V)

Experiments on the photooxidation As(III) were performed to evaluate the removal efficiency of as-synthesized biochar/SnS₂/PTA samples for oxy-acid ion pollution under visible light conditions at room temperature. The adsorption and photocatalytic oxidation performance of the as-prepared samples for arsenite were compared and studied. Among the results shown in Fig. 4a–d, the adsorption effects of the composite material on arsenite and arsenate were first explored before studying the photocatalytic conversion of As(III). As exhibited in Fig. 4a, the maximum adsorption capacity for pure As(III) was approximately 2.2 mg/L, while that for As(V) was 8.1 mg/L, which is 4 times the adsorption capacity toward As(III). This result indicated that the removal efficiency of As(V) was more significant compared to the pure adsorption of As(III), which was due to the coprecipitation between arsenate and the heteropoly acid. The phase transfer of arsenic could lead to significant increase of As adsorption capacity; therefore, the photocatalytic conversion of arsenite was implemented to achieve a low-toxicity treatment of arsenic, with the results displayed in Fig. 4b. The concentration of As(III) gradually decreased in the photocatalysis system of biochar/SnS₂/PTA. Among them, it took approximately 90 min for biochar/SnS₂/PTA-0.1 to remove arsenite with concentration of 10.0 mg/L. While in the biochar/SnS₂/PTA-0.3 and biochar/SnS₂/PTA-0.5 systems, the arsenite removal efficiencies were 90% and 80% within 90 min, respectively. This phenomenon can be contributed to that the
high loading of PTA covered the active sites of photocatalysis and subsequently inhibited the photooxidation of As(III). In addition, compared with the biochar/SnS\textsubscript{2}/PTA composite materials, the adsorption and photocatalytic conversion ability of pure biochar to As(III) was very poor (Xue et al., 2020), which highlighted that the introduction of S and Sn had the synergic effect of activating electrons on the carbon network of biochar and contributed to the photocatalysis reaction of As(III). And SnS\textsubscript{2} and PTA alone had inferior ability to remove As(III). Luckily, although the concentration of As(V) was increased, the concentration of the total As in the biochar/SnS\textsubscript{2}/PTA system obviously reduced ([As(III)]\textsubscript{biochar/SnS\textsubscript{2}/PTA} < [As(III)]\textsubscript{biochar/SnS\textsubscript{2}}). Therefore, the conversion of arsenite and the coprecipitation of arsenate occurred simultaneously in the biochar/SnS\textsubscript{2}/PTA system.

As illustrated in Fig. 4c, to verify the arsenic precipitation effect of PTA, photocatalytic experiments of the biochar/SnS\textsubscript{2} biochar/PTA and biochar/SnS\textsubscript{2}/PTA systems were performed. The results showed that the efficiency of removing As(III) and As(V) using the biochar/SnS\textsubscript{2}/PTA system was 1.5 and 5 times that of the biochar/SnS\textsubscript{2} systems, respectively, and the concentration of total arsenic in the biochar/SnS\textsubscript{2}/PTA composite system gradually decreased during the photocatalysis process. Compared with biochar/SnS\textsubscript{2}, biochar/PTA had poor photocatalytic ability for As(III), but its removal performance for As(V) was better, which further revealed the necessity of constructing ternary composite materials. SnS\textsubscript{2} improved the photocatalytic performance of the material, and PTA played a role in arsenic precipitation. After a comparative analysis, the as-prepared hybrids decorated with PTA can efficiently photooxidize As(III) to As(V). The phase transfer of arsenic by As-POMs could significantly increase the As adsorption capacity.

Furthermore, the Keggin unit of the PTA facilitated the transfer of electrons and reduced the recombination rate of photogenerated carriers, which can simultaneously realize As(III) photooxidation and As(V) coprecipitation to provide a potential platform for the effective removal of As.

3.3.2. Effect of pH on arsenic removal

To estimate the effect of the initial pH of the system on the photooxidation of As(III) and the precipitation of As(V), the removal of As(III) and As(V) by the photocatalyst was investigated at initial pH values of 2, 7, 10, and 12, and the results are displayed in Fig. 4d. At pH = 7, the biochar/SnS\textsubscript{2}/PTA-0.1 system exhibited a better removal ability for both As(III) and As(V), while the system’s ability to remove arsenic was reduced under acidic conditions. Similarly, with the gradual increase in the pH under alkaline conditions, the capacity of the system to remove arsenic gradually decreased. This result was mainly related to the distribution of arsenic species at different pH values. The H\textsubscript{2}AsO\textsubscript{2}− and H\textsubscript{2}AsO\textsubscript{3}− species are the dominant As(III) species with pH ranges of 2–9.2 and 9.2–10.7, respectively. As(V) exists in H\textsubscript{3}AsO\textsubscript{4}+ at pH < 7, while the H\textsubscript{3}AsO\textsubscript{4}2+ species increase rapidly as the pH increases from 7 to 12 (Deng et al., 2010). The presence of H+ at pH = 2 can protonate the OH groups into OH\textsubscript{2}, which will negatively affect the generation of •OH radicals and inhibit the photooxidation progress of As(III). In an alkaline environment, the deprotonation of the OH group was not conducive to adjusting the electronic band gap and improving the ion conductivity (Zhang et al., 2009). This phenomenon was adverse to the rapid transfer of electrons in the Keggin unit of the phosphotungstic acid, which in turn had a negative effect on the generation and transfer of photogenerated
carriers. Moreover, the electrostatic repulsion between the H₂AsO₃ or H₂AsO₄⁻ species and the catalyst surface was detrimental to the adsorption of As(III)/As(V) at pH = 10 or 12. Satisfactorily, at pH = 7, As(III) exists as a nonelectrical H₂AsO₃ species and does not affect the production of active free radicals, which is beneficial for accelerating the transfer of arsenic species between the interfaces and the photooxidation process (Imran et al., 2020).

3.3.3. Ion competition analysis

There are anions in the environment, such as chloride, nitrate, carbonate, sulfate, silicate and phosphate, which may hamper the removal of arsenic. Therefore, the effects of Cl⁻, NO₃⁻, CO₂⁻, SO₄²⁻ and PO₄³⁻ competitive ions on the photocatalytic conversion of As(III) and the adsorption of arsenic on the biochar/SnS₆/PTA-0.1 system were explored. As exhibited in Fig. 5a, it was explicitly discovered that the impact of coexisting Cl⁻, NO₃⁻, CO₂⁻ and SO₄²⁻ ions on the photooxidation of As(III) by biochar/SnS₆/PTA-0.1 was negligible, even though the original concentration was up to 100 mg/L. However, in the case of the coexistence of 100 mg/L of PO₄³⁻, the photocatalytic efficiency of the photocatalyst to As(III) was reduced to 78.8%. This phenomenon occurred because PO₄³⁻ and arsenite had similar ionic structures and competed with one another for photocatalytic active sites (Meng et al., 2000). Furthermore, SO₄²⁻ exhibited little effect on the removal of the total arsenic. In the presence of NO₃⁻ and CO₂⁻, the total arsenic removal efficiency was reduced from 99.5% to 59.9% and 75.1%, respectively. The existence of Cl⁻ had an obvious inhibitory effect on the removal of total As. Therefore, the as-prepared composites can be suitable for the removal of arsenic pollution in overlying water of paddy soil under flooding conditions. By comparison, PO₄³⁻ ions greatly restrained the total arsenic species removal, and the removal capacity of arsenic decreased from 99.5% to 19.8%. As expected, the analogical tetrahedral structure caused PO₄³⁻ to easily contend with arsenic species and build inner-sphere compounds on the surface of biochar/SnS₆/PTA-0.1, which resulted in the decline of arsenate precipitation and damping of the arsenic removal ability (Rahnemaie et al., 2007; Kolarik et al., 2018). Therefore, the presence of anions was not conducive to the adsorption of arsenate after photocatalysis, and the interference of these anions needed to be eliminated in the process of removing arsenic from actual water.

3.4. Durability and reusability of the photocatalysts

The durability and repeatability of the photocatalyst exhibits a significant indicative value for its practical use prospects. As demonstrated in Fig. 5b, the reproducibility of biochar/SnS₆/PTA-0.1 in the cyclic photooxidation experiments of As(III) and As(V) was discussed. After each cycle experiment, the hydroxyl groups on the surface of the biochar/SnS₆/PTA composite material were passivated and the active sites were occupied, leading to efficient desorption of arsenic species. Therefore, the exhausted composite material was placed in 0.1 M NaOH solution and shaken for 1 h to achieve regeneration. The regenerated biochar/SnS₆/PTA was then used in the next As(V) removal experiment. The biochar/SnS₆/PTA-0.1 photocatalyst can be used repeatedly at least 5 times without evident inactivation of the photocatalytic performance for As(III) and As(V), which revealed its favorable repeatability and satisfactory prospects in practical applications.

3.5. As(V) species co-precipitation mechanism

Different analysis and characterization methods were used to further explore the possible co-precipitation mechanism during the experiment. Noticeably, as illustrated in Figs. 6a, (4E)-4-(2-hydroxybenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one can act as a fluorescent probe to visually display the change trend of the solubility of the arsenic solution under irradiation with a 365 nm ultraviolet lamp (Lohar et al., 2013). From Fig. 6b, the fluorescence signal of the probe and the arsenic solution gradually weakened until there was no fluorescence signal. This phenomenon intuitively elaborated the gradual decrease of the arsenic concentration in the aqueous solution during the photocatalysis process. Moreover, the sample after photocatalysis was characterized by XRD. As shown in Fig. 6c, two new crystal planes appeared in the XRD spectrum after photocatalysis, corresponding to the (102) and (311) crystals of the W₄O₉(AsO₄)₂ (As-POM) precipitation (JCPDS No. 27-0912). In Fig. 6d, the 0.365 nm and 0.390 nm lattice spacings conformed to the (311) and (102) crystal faces of the As-POMs composites, respectively, as explained through the XRD measurement (Fig. 6c). The TEM and HR-TEM techniques further verified the formation of the As-POMs to realize the coprecipitation of the As (V) species. In other words, As(III) was oxidized to As(V) by photocatalysis, and then As(V) was co-precipitated with phosphotungstic acid in the system. And the formation of As-POMs can realize the phase transfer of arsenite and coprecipitate arsenate to achieve the efficient removal of arsenic species in an aqueous solution.

3.6. Mechanism of photocatalytic conversion of As(III)

The XPS detections for the biochar/SnS₆/PTA composites before and after photocatalysis are shown in Fig. 7. The high-resolution spectra of

![Fig. 5](image-url)
the C1s energy region (Fig. 7a) can be deconvoluted into four primary ingredients at binding energies of 284.7, 285.4, 286.6 and 289.2 eV, correlating to the sp²-bonded carbon, C–S bonds of C, carbonyl carbon (C=O), and carboxyl carbon (O=C–O), respectively. This phenomenon confirmed the exposure of oxygen-containing functional groups of single-phase carbon. The C–S bonds explained that some S heteroatoms were successfully embedded on the graphite carbon layer. Obviously, the XPS data of C1s after the photocatalysis reaction underwent major changes. The strength of the C–S bond increased and shifted to a lower binding energy of 284.8 eV. This phenomenon indicated that the introduction of sp² hybrid S helps attract electrons and break the electronic inertia of the carbon network. The carbon skeleton was activated during the photocatalysis process, which was conducive to the efficient progress of the reaction. The O 1 s spectrum (Fig. 7b) of the sample displayed four main signals at 531.1, 531.7, 532.3 and 533.0 eV, indexing to the W–O–W, C–O–H, W–O–P, and W–O–H groups, respectively (Li et al., 2014). Meanwhile, the negative transfer of these four chemical bonds may be due to the high-efficiency electron trap structure of PTA, which exhibited a high electron trapping capacity. The binding energy values of W 4f (Fig. 7c) at 36.5 and 38.6 eV (before photocatalysis) and after photocatalysis at 36.3 and 38.4 eV corresponded to W 4f5/2 and W 4f7/2, respectively, which are typical for the W(VI) chemical state of the Keggin unit structure. It is worth noting that the shift of the W 4f binding energy implied the formation of new W-containing chemical bonds after photocatalysis (Zhang et al., 2012). Additionally, the two obvious peaks of the S 2p spectrum (Fig. 7c) located at 162.1 and 163.2 eV were attributed to Sn–S and C=S–S bonds, which showed that there was a chemical interaction between biochar and SnS₂ (Dai et al., 2019). Fig. 7d showed the region of Sn 3d, in which the characteristic peaks at 487.1 and 495.6 eV were assigned to Sn 3d5/2 and Sn 3d3/2, respectively. Obviously, the remarkable peak of the As 3d analysis appeared at 45.8 eV (Fig. 7f). This peak showed that arsenic only existed as an As(V) species after photocatalysis and further explained that the as-obtained composite material exhibited a significant oxidation effect on arsenite in an aqueous solution. An analysis and comparison of the XPS spectra before and after photocatalysis demonstrated that the introduction of S can interfere with π–π* carbon sp² hybridization to activate the carbon atom (Tian et al., 2016). Noticeably, POMs with efficient electron trap structures can act as a bridge to accelerate the electron transfer during the photooxidation process on As(III), which helps to reduce the recombination efficiency of photo-generated carriers and improve the catalytic efficiency of the photocatalyst. Therefore, the introduction of S and PTA was beneficial for improving the electronic performance of carbon-based catalysts and expanding their application prospects in the field of catalysis.

Free radical trapping experiments and the EPR spin-trap technique were performed on the as-induced biochar/SnS₂/PTA-0.1 materials. Fig. 8a shows the inhibitory effects of p-benzoquinone (BQ, 0.5 mM) (Han et al., 2019; Huang et al., 2019; Ye et al., 2019), disodium ethylenediaminetetraacetate (EDTA-2Na, 5 mM) and tertiary butanol (t-BuOH, 1 mM) on the photooxidation of As(III) in composites. The As(III) oxidation rate was slightly inhibited by appending the BQ scavenger, suggesting that •O₂⁻ radicals had little effect on the photooxidation process (Eq. 1) (Xu et al., 2005; Deng et al., 2019). After adding EDTA-2Na, the oxidation efficiency of As(III) dropped from 99.5% to 44.7%, which implied that •OH radicals played a more significant role. In contrast, •OH radicals exhibited the greatest impact on the photocatalytic oxidation of As(III), with the oxygenation efficiency being reduced from 99.5% to 18.7% by adding t-BuOH (Eq. 2). This result showed that •OH radicals and h⁺ cooperate to participate in the oxidation reaction of As(III), of which •OH radicals were the dominant active species.

In previous research work, it has been explored that the EcB and EbB of biochar are −0.53 V and +1.70 V, respectively, while the EcB and EbB of SnS₂ are −0.69 V and +1.28 V, respectively (Xue et al., 2020). Furthermore, the EcB and EbB of phosphotungstic acid are 0.22 V and 3.70 V, respectively (Heng et al., 2016). As an efficient electron trap,
heteropoly acid has a strong ability to capture electrons, so electrons can be transferred from the CB of biochar and SnS$_2$ to the CB of heteropoly acid. Because electrons are trapped in the underfilled W 5d orbital (Li et al., 2014; Lu et al., 2012), the recombination rate of photogenerated electrons and holes is reduced. Furthermore, holes are transferred from the VB of PTA to the VB of biochar and SnS$_2$, and the holes can interact with OH groups or arsenic during the transfer process (Balati et al., 2020; Zuo et al., 2019; Jiang et al., 2015). Based on the above analysis, a diagram of the electron transfer path in composite materials was proposed, which was helpful for analyzing the mechanism of the photocatalytic process (Fig. 8e).

The synergistic effect of the Keggin unit on biochar/SnS$_2$ hindered the recombination of e$^-$–h$^+$ pairs because the electrons were immobilized in the unfilled W 5d orbital of the Keggin structure, which was

Fig. 7. XPS spectra of biochar/SnS$_2$/PTA: (a) C 1 s, (b) O 1 s, (c) S 2p, (d) Sn 3d, (e) W 4f and (f) As 3d spectra.
Fig. 8. (a) Trapping experiments of photooxidation of As(III) by adding different scavengers to the biochar/SnS₂/PTA-0.1 composite. Typical ESR spectra of (b) DMPO•-OH and DMPO•-SO₄²⁻, (c) TEMPO•-h⁺ and (d) DMPO•-O₂ adducts in the biochar/SnS₂/PTA-0.1 system at pH 7.0. (e) The proposed charge transfer pathways and photocatalytic conversion mechanism for As(III) on the biochar/SnS₂/PTA-0.1 composites under visible-light irradiation.
beneficial to prolonging the lifetime of the photogenerated holes in the VB of phosphotungstate. As the VB energy level of the phosphotungstic acid (−3.70 V vs NHE) was higher than the redox potential of •OH/OH− (+2.38 V vs NHE) (Zhang et al., 2013), the holes interacted with surface OH groups and generated surface-associated •OH radicals in aqueous media (Eq. 3). The oxidation of As(III) via •OH groups resulted in the generation of As(IV), which were disproportionately produced to As(V) and As(III) (Eqs. 4–5) (Xu et al., 2005). As(IV) can also undergo oxidation through dissolved O2 to yield As(V) (Eq. 6). Meanwhile, the existence of the DMPO−SO•4 signals (Fig. 8b) illustrated that the composites achieved the conversion of S atoms at the interface of biochar into SO•4 radicals. The S species on the surface of biochar can be oxidized by •OH radicals into SO•4 species (Shi et al., 2020), which can be transferred into SO•4 radicals under the action of visible light. This phenomenon illustrated that SO•4 radicals assisted in the photocatalysis process dominated by •OH radicals.

In Fig. 8c, the TEMPO−• signals changed significantly after 8 min of light, revealing that TEMPO−• played an important role in the photocatalysis process, which was consistent with the results of the free radical trapping experiments (Fig. 8a). Since the valence band potential of the phosphotungstic acid (−3.70 V vs NHE) was more positive than the E° of As(III)/As(IV) (+2.4 V vs NHE) (Klinzing et al., 1989), the holes displayed the capacity to oxidize As(III) to As(IV) (Eq. 7). Importantly, the heteroeatom S, with a high electronegativity and a large electron density, can disturb the electronic structure and spin of the sp2 hybrid carbon atom, which can activate the carbon atom and break the electronic inertness of the carbocatalyst. This phenomenon was more conducive to the separation of photogenerated carriers. Similarly, once As(IV) appeared, they were immediately converted to As(V) by the dissolved oxygen in the system (Eq. 6). Additionally, as displayed in Fig. 8d, the DMPO−•O2 signals were inconspicuous compared with the DMPO−•OH and TEMPO−• signals. And the redox potential of •O2/H2O2 is only 1.71 V vs NHE (Wardman, 1989), which is lower than the E° of As(III)/As(IV) (+2.4 V vs NHE). This phenomenon revealed that •O2 can hardly oxidize As(III) into As(IV). According to the above analysis, the •OH, •SO4 and h• free radicals synergistically participated in the process of photocatalytic As(III) oxidation, indicating that the as-prepared composite material can achieve efficient As(III) removal. This work can provide potential platforms for the nontoxic treatment of arsenic solutions with biochar-based catalysts, which is conducive to expanding the practical application value and prospects of biochar.

Declarations of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 41977129, 21607176 and 31670563), Hunan Huxiang Young Talents Support Program, China (No. 2020RC3044), Changsha Outstanding Innovative Young Training Program, China (No. kq1802011), the Natural Science Foundation of Hunan Province, China (No. 2020JJ14316, 2017J3516), the Research Foundation of Education Bureau of Hunan Province, China (No. 16B274), the Innovation Fund for Post-graduates of Central South University of Forestry and Technology, China (No. CX20192023), the Hunan Provincial Innovation Foundation for Postgraduate, China (No. CX20200732) and the Scientific Innovation Fund for Post-graduates of Central South University of Forestry and Technology, China (No. CX202002051).

References
