Highly efficient removal of Pb$^{2+}$ by a polyoxomolybdate-based organic-inorganic hybrid material {[(4-Hap)$_4$[Mo$_8$O$_{26}$]]}

Xue-Dong Dua,b, Chong-Chen Wanga,b,*, Jun Zhonga, Jian-Guo Liua, Yu-Xuan Lia, Peng Wanga

aBeijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
bKey Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China

A R T I C L E I N F O

Article history:
Received 27 December 2016
Received in revised form 6 March 2017
Accepted 24 March 2017
Available online 25 March 2017

Keywords:
Organic-inorganic hybrid compound
Adsorption
Pb$^{2+}$
Electrostatic interactions
Ion exchange

A B S T R A C T

An organic-inorganic hybrid compound, {[(4-Hap)$_4$[Mo$_8$O$_{26}$]]} (4-ap-4-aminopyridine) (BUC-14), was synthesized via hydrothermal method, and utilized to conduct adsorptive uptake of typical heavy metal ion (Pb$^{2+}$), in which some key parameters on Pb$^{2+}$ adsorption and possible mechanism were investigated. The BUC-14 results in excellent adsorption performance for Pb$^{2+}$ from simulated wastewater, and the maximum uptake capacity is 1105.7 mg/g at 298 K. The kinetics behavior and equilibrium isotherm were well described using pseudo-second-order and Langmuir model, respectively. The adsorption process was thought to be divided two stages as electrostatic adsorption and ion exchange adsorption. Finally, the adsorption mechanism was proposed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heavy metal pollution which can cause brain damage and disease to humans and other species had become a serious threat to environment [1]. If someone drinks water containing Pb$^{2+}$ ions for a long term, even if in a very low concentration, it would lead to serious disorders like nausea, convulsions, coma, renal failure, cancer, even subtle effects on metabolism and intelligence [2]. Up to now, many techniques had been introduced to remove Pb$^{2+}$ ion from water waste, such as ion exchange [3], co-precipitation [4], membrane filtration [5], adsorption [6], and so on [7–9]. Among them, the adsorption technique is the most extensively adopted one considering its low cost, ease operation and high efficiency, especially for organic dyes and heavy metal ions with low concentration [10]. As a result, continuous efforts are being made to prepare adsorbents with excellent performance [11,12].

Design and assembly of organic-inorganic hybrid materials based on the polyoxomolybdate anions are currently of great interest in the field of material chemistry and crystal engineering due to that they can provide versatile architectures and potential applications in electrochemistry [13], adsorption [14], fluorescence [15], photocatalysis [16] and magnetism [17]. A novel organic–inorganic hybrid material named {[(4-Hap)$_4$[Mo$_8$O$_{26}$]]} (BUC-14) was synthesized under hydrothermal conditions by Zhang et al. [18], which exhibited ultra-high uptake efficiency and capacity to methylene blue (MB). BUC-14 preferred to uptake cationic MB from MB/MO (MO = methyl orange) mixture because of its negative zeta potential of ~46.7 mV. BUC-14 could adsorb both cationic MB and RhB (RhB = Rhodamine B), but it tended to adsorb MB from MB/RhB (RhB = Rhodamine B) mixture because of the well match between the molecular size of MB and its porosity size. Considering that BUC-14 could uptake cationic species, and also being encouraged by the excellent performances of Hg$^{2+}$ ions in similar organic – inorganic hybrid crystalline materials [19,20], within this paper, Pb$^{2+}$ was selected as a heavy metal model to further verify the adsorption performance of BUC-14. The involved kinetic models, isotherm models and the thermodynamic parameters were analyzed and calculated. A continuous flow fixed bed column experiment was conducted to provide information for large-scale practical operation. And the possible adsorption
mechanism was proposed, which was affirmed by XPS, SEM-EDS and FTIR analyses.

2. Experimental

2.1. Materials

Cadmium chloride hydrate (CdCl$_2$.2.5H$_2$O), ammonium molybdate tetrahydrate (H$_2$MoO$_4$.4H$_2$O), 4-aminopyridine (4-ap) and lead standard solution (1000 mg/L) were purchased from J&K Scientific Ltd and used without further purification.

2.2. Synthesis of organic-inorganic hybrid compound [(4-Hap)$_4$(MoO$_3$)$_3$] (BUC-14)

BUC-14 was synthesized according to the reported procedure by Zhang et al. [18]. A mixture of CdCl$_2$.2.5H$_2$O (0.3 mmol, 0.0685 g), ammonium molybdate tetrahydrate (H$_2$MoO$_4$.4H$_2$O, 0.6 mmol, 0.7415 g) and 4-ap (0.3 mmol, 0.0280 g) with molar ratio of 1:2:1 was sealed in a 25 mL Teflon-lined stainless steel Parr bomb containing deionized H$_2$O (20 mL), heated at 443 K for 72 h, and then cooled down to room temperature. White block-like crystals of BUC-14 were isolated, washed with deionized water and ethanol three times sequentially, and finally dried at 60°C.

2.3. Characterization

Powder X-ray diffraction (PXRD) patterns of the samples were obtained with a Dandonghaoyuan DX–2700B diffractometer in the range of 2θ = 5°–40° with Cu Ko radiation. The Fourier transform infrared (FTIR) spectra were recorded from KBr pellets on Nicolet 6700 spectrometer in the range of 400–4000 cm$^{-1}$. The surface area of the sample was obtained from N$_2$ adsorption-desorption isotherms at 77 K using Brunauer-Emmett-Teller nitrogen-helium absorption method (BET, V-Sorb 2800P, Gold APP Instruments Co., Ltd). The morphology and the elemental mapping were observed by using a field emission gun scanning electron microscope (SEM) equipped with Bruker XFlash 5010 Energy Dispersive Spectrometer (EDS). X-ray photoelectron spectra (XPS) measurement was performed with Thermo ESCALAB 250Xi. The surface charge of the particles was assessed by zeta potential measurements using the Malvern zeta sizer Nano ZS and by applying the field strength of 20 V/cm.

A 6545 Q-TOF LC/MS (Agilent Technologies) was used to detect the organic compounds in the solution after adsorption. The analyses were separated by an Agilent ZORBAX SB-Aq (1.8 µm, 2.1 × 50 mm) on an Agilent 1290 UHPLC equipped with a DAD detector. Acidified water (0.05% formic acid, v/v) and acetonitrile were used as mobile phase A and B, respectively. Gradient was programmed as follow: 0 min, 0% B; 1 min, 0% B; 2 min, 5%; 6 min, 5% B. The column temperature was maintained at 308 K. The 6545 Q-TOF LC/MS was equipped with a Jet Stream electrospray ionization source (ESI). Parameters for analysis were set in both positive and negative ion modes. The optimal values of the ion source parameters were: capillary, +2000 V; drying gas temperature, 473 K; drying gas flow, 8.0 L/min; nebulizer pressure, 35 psi; sheath gas temperature, 573 K and sheath gas flow, 11.0 L/min. The MS data were processed using Mass Hunter Qualitative Analysis software (Agilent Technologies), which provided a list of possible elemental formulas. Molecular Structure Correlator software (Agilent Technologies) was employed to analyze the MS/MS spectra and to match the possible structures.

The leaked concentration of Mo from BUC-14 in the solution after adsorption was determined by ICP-OES (Thermo Scientific iCAP 7200) at the wavelength of 202.03 nm, with the detection limit being 0.004 mg/L.

2.4. Adsorption performance towards Pb$^{2+}$

The adsorption performance of the as-synthesized BUC-14 samples was investigated by assessing the removal efficiency of Pb$^{2+}$ from the simulated wastewater prepared by dissolving Pb(NO$_3$)$_2$ in deionized water with pH = 1.0–1.2. A desired amount of BUC-14 sample (0.0040 g) with a particle size less than 147 µm was added to 200 mL simulated Pb$^{2+}$ aqueous solution with concentrations ranging from 18.0 mg/L to 26.0 mg/L in a 250 mL conical flask. The mixture was shaken at a constant speed of 140 rpm in a constant temperature water bath oscillator under temperatures 298 K, 308 K, 318 K and 328 K, respectively. After shaking for 3 h, the BUC-14 sample was separated by filtration through a membrane filter (0.45 µm). The residual concentration of Pb$^{2+}$ was determined by flame atomic absorption spectrophotometry (PinAAcle 900T).

2.5. Column study and selective adsorption

Fixed bed study was conducted in the solid phase extraction (SPE) columns (Φ= 1.0 cm, 6.5 cm in length). The solution containing 10 mg/L Pb$^{2+}$ was passed up-to-bottom via the column containing 1.5 g BUC-14 sample with a particle size less than 147 µm (packing height = 8 mm) at a flow rate of 10 mL/min. The residual Pb$^{2+}$ concentrations of the treated solutions were determined by flame atomic absorption spectrophotometry (PinAAcle 900T). The equipment of column study is depicted as Fig. 1(b).

A desired amount of BUC-14 sample (0.0040 g) was added to 500 mL simulated wastewater with Pb$^{2+}$ (10.0 mg/L)/Cu$^{2+}$ (10.0 mg/L) and Pb$^{2+}$ (10.0 mg/L)/Cd$^{2+}$ (10.0 mg/L) in a 1000 mL conical flask, respectively. Flame atomic absorption spectrophotometry (PinAAcle 900T) was used to determine the residual Pb$^{2+}$, Cu$^{2+}$ and Cd$^{2+}$ in the solutions after adsorption, which can identify the selective adsorption performance of BUC-14 towards different heavy metals.

3. Results and discussion

3.1. Adsorption performance

3.1.1. Equilibrium studies (isotherm models)

The analyses of the isotherm data are important and necessary to fit corresponding equations, which can accurately describe the obtained results, and can be utilized for the design purpose. To investigate the sorption isotherm, three isotherm models including Langmuir, Freundlich, and Dubinin–Radushevich isotherm equations (as listed in Eqs. S1–S3) were utilized to describe the equilibrium adsorption data. Considering that each model possesses both advantages and disadvantages, five error functions (the corresponding equations being listed in Table S1) along with correction coefficient R^2 were introduced to determine the best fit adsorption isotherm [21]. The adsorption data fitted by three different isotherm models was shown in Table 2 and Fig. S1. The applicability of the isotherm models to adsorption behavior was determined by both the correlation coefficient (R^2) and the error functions values [22]. As shown in Table 2, the R^2 values of the Langmuir isotherm were greater than those of the other two isotherms for the adsorption of Pb$^{2+}$, and the various error function values of Langmuir isotherm were smaller than those of the other two isotherms. This implied that the adsorption of Pb$^{2+}$ onto BUC-14 adsorbent was better described by the Langmuir model than Freundlich, and Dubinin–Radushevich ones. As listed in Table 1 and 2, the predictable maximum adsorption capacities of BUC-14 for Pb$^{2+}$ ranged from 1105.7 mg/g to 1166.8 mg/g with the temperature increasing from 298 K to 328 K. The q_m values of Pb$^{2+}$
BUC-14 adsorbent were compared with those of its counterparts as listed in Table 1, in which it can be found that the q_m value of BUC-14 adsorbent was much higher than most of the adsorbents reported previously, including but not limited to amino-functionalized mesoporous silicas [23], N-methylimidazole modified palygorskite [24].

The essential characteristics and feasibility of the Langmuir isotherm were also determined in terms of a dimensionless constant separation factor (R_L), as calculated via Eq. S5 [25]. The R_L values can clarify the adsorption process to be irreversible ($R_L = 0$), favorable ($0 < R_L < 1$), linear ($R_L = 1$) or unfavorable ($R_L > 1$). The R_L values of Pb$^{2+}$ adsorbed onto BUC-14 ranged from 0.005 to 0.022 for the temperature from 298 to 328 K, indicating that the adsorptions of Pb$^{2+}$ onto BUC-14 was favorable.

3.1.2. Thermodynamic parameters

In order to gain further insight into the Pb$^{2+}$ adsorption process in the BUC-14 adsorbent, the adsorption performances at various temperatures ranging from 298 K to 328 K were examined. It can be seen that the amount of adsorbed Pb$^{2+}$ increased with the increasing temperature, implying that the adsorption of Pb$^{2+}$ is endothermic reaction.

Table 1
Comparison of the adsorption capacities on various adsorbents.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Adsorption capacity (mg/g)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUC-14</td>
<td>1105.7</td>
<td>This work</td>
</tr>
<tr>
<td>UiO-66-NH$_2$</td>
<td>1795.3</td>
<td>[26]</td>
</tr>
<tr>
<td>amino-functionalized mesoporous silicas</td>
<td>982.1</td>
<td>[23]</td>
</tr>
<tr>
<td>N-methylimidazole modified palygorskite</td>
<td>714.3</td>
<td>[24]</td>
</tr>
<tr>
<td>CoFe$_2$O$_4$-rGO</td>
<td>299.4</td>
<td>[27]</td>
</tr>
<tr>
<td>EDTA functionalized magnetic graphene oxide</td>
<td>268.4</td>
<td>[6]</td>
</tr>
<tr>
<td>Attapulgite clay@carbon</td>
<td>263.8</td>
<td>[28]</td>
</tr>
<tr>
<td>WO$_3$</td>
<td>248.9</td>
<td>[29]</td>
</tr>
<tr>
<td>Zinc silicate</td>
<td>210.0</td>
<td>[30]</td>
</tr>
<tr>
<td>Fe$_3$O$_4$-MnO$_2$</td>
<td>208.2</td>
<td>[31]</td>
</tr>
<tr>
<td>Ulmus tree leaves</td>
<td>201.1</td>
<td>[32]</td>
</tr>
<tr>
<td>Amino functionalized silica spheres</td>
<td>194.4</td>
<td>[33]</td>
</tr>
<tr>
<td>Hydroxyapatite</td>
<td>100.0</td>
<td>[34]</td>
</tr>
</tbody>
</table>
In order to clarify the feasibility, favorability, spontaneity and even the mechanism of the ongoing adsorption process, thermodynamic parameters including standard Gibbs free energy (ΔG°, kJ/mol), enthalpy change (ΔH°, kJ/mol) and entropy change (ΔS°, J/(mol·K)), were calculated with the aid of data obtained from Langmuir adsorption isotherm via Eqs. S6 and S7 [35], as illustrated in Table 3. In general, free energy (ΔG°) values between –20 and 0 kJ/mol suggests that physisorption process is dominated, while ΔG° values ranging from –80 to –400 kJ/mol implies a chemisorption process [36]. In this study, the values of ΔG° was found to decrease from –31.60 kJ/mol at 298 K to –38.95 kJ/mol at 328 K, indicating that the adsorption process of Pb²⁺ onto BUC-14 adsorbent became more favorable at higher temperatures, which could also be confirmed from the corresponding maximum adsorption amount increase from 1105.7 mg/g at 298 K to 1166.8 mg/g at 328 K. The ΔG° values from –31.60 kJ/mol to –38.95 kJ/mol also suggested that the sorption process was mainly controlled by physical sorption along with partial chemical sorption [36,37]. The positive value of ΔH° (42.51 kJ/mol) indicated that the adsorption reaction is endothermic [38], which can be affirmed by the fact that the adsorption capacity increased with the increasing temperature. The positive ΔS° value (249.24 J/(mol·K)) for the sorption process implied the increase randomness at the solid-solution interface during the adsorption of Pb²⁺ onto BUC-14 [39].

3.1.3. Kinetic studies

It was very important to predict the adsorption rate, adsorbate retention time and the reactor dimensions, which were all controlled by the system’s kinetics [40]. Also, in order to design an effective adsorption process, it is highly necessary to have deep understanding and clear concept about the kinetics of the adsorption process. In this study, both the pseudo-first-order model [41] and the pseudo-second-order model [40] (the corresponding equations were depicted in ESI as Eqs. S8 and S9, respectively) were utilized to describe the adsorption kinetics process. The fittings of the pseudo-first-order and pseudo-second-order kinetic models to the kinetic experimental data for the Pb²⁺ adsorption onto BUC-14 were illustrated in Fig. S2. The results listed in Table S2 and S3 demonstrated that the experimental qe (q_{exp}) values (125.0 mg/g, 187.5 mg/g, 250.0 mg/g, 375.0 mg/g, and 401.3 mg/g) were in good accordance with the qe (q_{cal}) values (128.2 mg/g, 192.3 mg/g, 256.4 mg/g, 400.0 mg/g, and 416.7 mg/g) calculated from the pseudo-second-order model, respectively. The corresponding correlation coefficient R² values were more close to unity of 1; and the Chi-square (χ²) depicted as Eq. S10 listed in ESI of the pseudo-second-order model was much smaller than the pseudo-first-order model. All these results indicated that the pseudo-second-order model was suitably fitted to the kinetic data of Pb²⁺ adsorption onto BUC-14. The results also indicated that the increase of initial Pb²⁺ concentration led to increased equilibrium sorption capacity (qe) and decreased rate constant of pseudo-second-order (k_2), while the lower initial concentration led to faster equilibrium and increased k_2 values (the rate constant of pseudo-second-order), which could be contributed to that there were plenty of available adsorption sites on the surface of BUC-14 adsorbent in the initial stages [42].

3.1.4. Analysis of column data and selective adsorption

To develop an industrial friendly method that can be utilized for the practical large-scale operation, a continuous flow fixed bed column is preferred due to that it is easy to operate and provides many useful parameters related to pollutants removal [43]. In the column operation, the adsorbents can be continuously in contact with a fresh solution, which implied that the concentration of the solution in contact with a given layer of the adsorbent in a column was relatively constant. The adsorption behavior and efficiency of the fixed bed column could be described in terms of the time for the appearance of breakthrough and the shape of the breakthrough curve, which was heavily influenced by bed height, flow rate and the feed solution concentration. Therefore, the column experiments can be used to predict how much effluent can be treated by the fixed bed and how long the fixed bed will last before regeneration.

The results of the fixed bed column studies in this study were illustrated in Fig. 1(a), which revealed that up to 360 min, there was few Pb²⁺ in the effluent (C_e < 0.01 mg/L). The adsorption capacity of the BUC-14 packed bed was almost exhausted after 72 h of continuous inflow of Pb²⁺ solution. The adsorption capacity and the exhaustion time might be further increased via the increase of the adsorbent (BUC-14) loading mass [44].
Where, instantaneous total amount at time t is calculated using Eq. (1).

\[
m_a = \frac{Q \cdot A}{1000} - \frac{Q}{1000} \int_{t=0}^{t=t_{tot}} C_{ad} \cdot dt
\]

(1)

Where, Q refers to the volumetric flow rate in mL/min; \(t_{tot}\) is the total flow time (min). A is the area under the breakthrough curve that can be calculated by integrating the adsorbed concentration (\(C_{ad}\)) versus t plot using the Origin 9.1 software. \(m_{tot}\) is the total amount of \(Pb^{2+}\) influent through the fixed bed which can be calculated using Eq. (2).

\[
m_{tot} = \frac{C_0 \cdot Q \cdot t_{tot}}{1000}
\]

(2)

The total removal efficiency was calculated from the ratio of the total adsorbed \(Pb^{2+}\) amount vs the total amount of the added \(Pb^{2+}\) \((m_{tot})\) in the influent passed through the fixed bed using Eq. (3). The removal efficiency was as high as 96.81% in the first 360 min. The total adsorbed \(Pb^{2+}\), \(m_{tot}\) and the total removal efficiency were 218.09 mg, 432.00 mg, and 50.48%, respectively. There was an instantaneous jump in effluent concentration from zero to the feed concentration when the breakthrough point (about 2000 min) was reached [44].

Total removal efficiency \((\%) = \frac{m_a}{m_{tot}} \times 100\% \)

(3)

In order to test the preferential adsorption of specified heavy metal species from their mixture, the selective adsorption experiments were designed. The results as shown in Fig. 1(c) and (d) revealed that \(Pb^{2+}\) ions were preferentially adsorbed by BUC-14 from \(Pb^{2+}/Cu^{2+}\) and \(Pb^{2+}/Cu^{2+}\) mixtures, respectively, which implied that BUC-14 can be used to efficiently separate and concentrate \(Pb^{2+}\) from the mixed solution of heavy metal ions.

For large-scale application, the leaking of Molybdenum (Mo) from BUC-14 during the adsorption procedure was also a big issue. Therefore, the Mo contents determined with ICP-OES ranged from 0.09 mg/L to 0.113 mg/L, which was slightly higher than the limit values of 0.08 mg/L in drinking water set by EPA (EPA 822-R-04-005).

3.2. Proposed adsorption mechanism

According to the previously reported results of zeta potential by Zhang et al. [18], BUC-13 had an overall negative surface charge from pH = 2 to pH = 10. The zeta potential of BUC-14 decreased with the increase of pH due to the protonation of N—H::O groups on its surface, which further indicated that there were plenty of positive sites on the surface. Electrostatic interactions between negative charges originated from \([MoO_2]^{4-}\) and the positive charges of adsorbate \(Pb^{2+}\) in this study) were responsible for the strong affinity between the BUC-14 and \(Pb^{2+}\). Previous studies had illuminated that the surface area was an important factor to influence the adsorption capacity [45,46]. But, in this study, BUC-14 possessed inferior surface area (5.17 m^2/g) determined by N₂ sorption/desorption measurement [18], which implied that the strong affinity in binding with \(Pb^{2+}\) might not be assigned to its surface area. To further investigate the adsorption mechanism of \(Pb^{2+}\) onto BUC-14, FTIR, elemental mapping obtained from SEM, XRD, and XPS were used to analyze the composition, morphology and microstructure of BUC-14 before and after uptake of \(Pb^{2+}\).

The uptake of \(Pb^{2+}\) via BUC-14 as absorbent was proposed to be attributed to both electrostatic interactions along with coordination interactions (the first stage process) and ion exchange (the second stage process). In the first stage (less than 60 min), \(Pb^{2+}\) ions were captured by BUC-14 via electrostatic interactions between cationic \(Pb^{2+}\) and anionic surface charge of BUC-14, and even coordination interactions between \(Pb^{2+}\) and —NH₃ attached on pyridyl ring of 4-aminopyridine. Both the FTIR (Fig. 2) spectra and powder XRD

Fig. 2. FTIR spectra of BUC-14 before and after adsorption of \(Pb^{2+}\) from the solution at the first stage and the FTIR spectrum of PbMoO₄ formed in the second stage.

Fig. 3. (a)–(d) C, N, O and Mo elemental mapping of BUC-14 (adsorption @10 min), (e)–(i) C, N, O, Mo and Pb elemental mapping of BUC-14 after adsorption.
patterns (Figs. S3 and 4(a)) of BUC-14 before adsorption and after adsorption were almost consistent with the corresponding ones of as prepared BUC-14, indicating a good stability of the crystalline sample. The elemental mapping obtained from SEM showed that the presence of Pb in BUC-14 after adsorbing Pb\(^{2+}\) besides C, N, O, and Mo in the as-prepared BUC-14 (as shown in Fig. 3). Furthermore, the uptake of Pb\(^{2+}\) onto BUC-14 can be confirmed by XPS, in which the XPS spectra signals of Pb\(^{2+}\) with binding energy of 138.3 eV (Pb 4f) could be observed, as shown in Fig. 4(c). In the first stage, the functional groups of BUC-14 like −NH\(_2\) and Mo − O were proposed.

Fig. 4. (a) Comparison of XRD patterns of BUC-14 before and after adsorption of Pb\(^{2+}\). (b) SEM of BUC-14 before and after adsorption (I) before adsorption, (II) after 10 min adsorption, (III) after 60 min adsorption, (IV) after 7 d adsorption. (c) Full range XPS spectra of BUC-14 before and after adsorption of Pb\(^{2+}\). (d) XPS spectra of Pb 4f. (e) XPS spectra of N 1s. (f) XPS spectra of O 1s.
to play a key role in the removal of Pb^{2+}. The bands at 3454 and 3266 cm⁻¹ (Fig. 2) in the FTIR spectra are assigned to the symmetric and asymmetric vibrations of —NH₃, the intense of above mentioned bands decreased due to the coordination of N in amidoegen (—NH₂) with Pb²⁺ [26,47], which was confirmed by the presence of new peak at 404.8 eV in XPS spectra of BUC-14 absorbing Pb²⁺, as depicted in Fig. 4(e).

In the second stage, the uptake of Pb²⁺ could be assigned to the ion exchange between protonated 4-aminopyridine and Pb²⁺, which was affirmed by the detection of free 4-aminopyridine in the solution from the information provided via Q-TOF-MS equipped with ESI, as shown in Figs. S4–S5. The XPS spectra as shown in Fig. 4(f) of the final product in the second stage revealed that the peaks at 142.7 eV (Pb 4f₇/2) and 137.8 eV (Pb 4f₅/2) were ascribed to PbO which was originated from Pb²⁺ ion of the PbMoO₄ [48,49], suggesting the formation of a new lead compound. The peaks in the curve for O₁ in final product obtained after adsorption at the 7th day were attributed to the bond of Mo–O at 529.3 eV and the bond of Pb–O at 532.1 eV as shown in Fig. 4(f) [49]. The peaks of PXRD pattern of the final product as depicted in Fig. 4(a) perfectly matched with the ones of PbMoO₄ (ICPDS card no. 164725), implying the formation of PbMoO₄ resulted from the complete ion exchange between protonated 4-aminopyridine and Pb²⁺ (as illustrated in Eq. (4)), just similar to the formation of PbWO₄ previously reported by Liu et al. [29]. The SEM images (Fig. 4(b)) also illustrated the change of BUC-14. The calculated value obtained with the aid of Eq. (4) indicated that 1.0 g of BUC-14 could reaction with 102.91 mg Pb²⁺, which accorded well with the calculated maximum adsorption capacity (1105.7 mg/g) through Langmuir model. The formation of PbMoO₄ can also be affirmed by its FTIR spectra, which matched nicely with the FTIR spectra of PbMoO₄ in previous reported papers [50,51]. It was interesting to note that the final reaction product of PbMoO₄ was a potential photocatalyst [52,53], the sustainable and recyclable usage of the BUC-14.

\[C_{20}H_{24}N_{8}MoO_{26} + 8Pb^{2+} + 6H_{2}O \rightarrow 4C_{4}H_{5}N_{2} + 8PbMoO_{4} + 16H^{+} \] (4)

4. Conclusion

In all, [(4-Hap₄(C₂H₅O₃)) (BUC-14)] exhibited excellent performance to remove Pb²⁺ from simulated wastewater, and the adsorption process was proposed to be divided into two stages. In the first stage, the adsorption process followed pseudo-second-order kinetic model as well as Langmuir isotherms. The adsorption of Pb²⁺ onto BUC-14 at various temperatures showed that the corresponding adsorption process was spontaneous (negative ΔG⁰), endothermic (positive ΔH⁰) and the randomness increases (positive ΔS⁰). It was supposed that Pb²⁺ was adsorbed both through electrostatic attractions and coordination interactions in the first stage. In the second stage, the mechanism was proposed that ion exchange between protonated 4-aminopyridine and Pb²⁺, which were proved by various characterization techniques like SEM-EDS, XRD, XPS and even Q-TOF-MS. The column study indicated BUC-14 possessed a wide and potential application in practical engineering. BUC-14 exhibited excellent selective adsorption of Pb²⁺ from the heavy metals matrix. Further researches should be carried out to clarify the adsorptive activities on other heavy metal ions and the photocatalytic performance of the finally obtained PbMoO₄.